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We review some problems in nonequilibrium phy-
sics from the point of view of statistical physics and 
differentiable dynamics. Specifically, we discuss the 
mathematical difficulties which inherently under-
lie applications to heat transport, to hydrodynamic 
turbulence, and to the study of life. The microscopic 
dynamics of transport phenomena (in particular heat 
transport) is necessarily non hyperbolic, which ex-
plains why it is a difficult problem. The 3D turbulent 
energy cascade can be analyzed formally as a heat 
flow, and experimental intermittency data indicate 
that this requires discussing a Hamiltonian system 
with 104 degrees of freedom. Life is a nonequilibrium 
statistical physics phenomenon which involves chemi-
cal reactions and not just transport. Considering life 
as a problem in nonequilibrium statistical mechanics 
at least shows how complex and difficult the study of 
nonequilibrium can be.

T he aim of nonequilibrium statistical mechanics is 
to understand the properties of matter outside of 
equilibrium, starting from microscopic dynamics. 

At this time nonequilibrium statistical mechanics of 
transport phenomena close to equilibrium is a well-
developed physical theory (due to the work of Onsager, 
Green, Kubo, etc. in the 1950’s, see for instance [1]). 
Away from this area, the theory of nonequilibrium 
is a program, or a variety of programs, rather than a 
theory. Here I shall make a choice, and describe an ap-
proach starting with classical Hamiltonian microscopic 
dynamics. From my point of view this approach has 
the interest that it uses nontrivial recent results in the 
theory of smooth dynamical systems, and that it sheds 
light on interesting physical phenomena: heat trans-
port, hydrodynamic turbulence, and life.

A general study of nonequilibrium should begin 
with equilibrium statistical mechanics and nonequili-
brium close to equilibrium, which are reasonably well 
understood physical theories, but for lack of time I 
shall skip those here. For my purposes I shall start with 
the microscopic evolution equations

  d __ dt  (p
q) = (–∂qU )  or    d __ dt  (p

q) = (ξ(q)–αp)
                 

 p/m                              p/m

with  α =   ξ(q)·p
 _____ p·p   .

On the left is the Hamiltonian evolution equation. 
To obtain nonequilibrium I have replaced on the right 
the gradient force by a more general force ξ(q). But en-
ergy is then no longer conserved, so that p·p/2m would 
probably grow indefinitely with time for the modified 
system (the system heats up). An extra term –αp (iso-
kinetic or IK thermostat) has thus been introduced so 
that p·p/2m is constant in time. We have now a smooth 
time evolution (f t) defined by

  dx __ dt    = X(x) (1) 

on a compact manifold M = {x = (p, q) : p·p/2m = con-
stant}. To avoid unphysical behavior, it is necessary to 
assume that the time evolution (1) is sufficiently chao-
tic: this is the chaotic hypothesis of Gallavotti and Co-
hen [2]1). A nonequilibrium steady state (NESS) is now 
a probability measure ρ0 on M invariant under (f t). In 
fact we shall assume that, starting from an absolutely 
continuous probability measure m on M, time evolu-
tion will yield the NESS ρ0 in the infinite time limit:

ρ0 = limt → ∞(f t)*m  in a suitable sense (2) 

The limit ρ0 is in general no longer absolutely contin-
uous on M.

It is of great physical interest to understand how 
ρ0 is changed (to ρt) when the time evolution (1) is 
per turbed to

  dx __ dt    = X(x) + λ Xt(x) (3) 
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 1) Technically, one 
assumes that the time 
evolution is Anosov or 
hyperbolic in some sense.
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If we assume a time periodic force Xτ = X eiω(t0 – τ), a 
formal first-order perturbation calculation yields the 
linear response formula for the expectation value of an 
observable A:

ρt0(A) = ρ0(A) + λκ̂(ω) where

κ̂(ω)   = ∫0

∞
 dt eiωt∫M

 ρ0(dx) X(x)·∂x(A  f t) (4) 

Here A is a smooth function on M and κ̂ is known as 
the susceptibility. If Xt = X is independent of t, the per-
turbation λ X replaces ρ0 by ρ0 + κ ̂ (0).

Nonequilibrium close to equilibrium is obtained 
when ρ0 is an equilibrium state, assumed to be abso-
lutely continuous on M. As to a rigorous proof of (4), 
it can be obtained for “very chaotic” systems, namely 
Anosov with exponentially decaying correlations. This 
gives some useful examples like the geodesic flow on 
a manifold of negative curvature (see [3] – [5]) but the 
linear response formula is believed to hold much more 
generally. In fact we shall refer later to an application of 
a linear response formula proved by Dolgopyat [6] for 
time evolutions which are not Anosov but only partial-
ly hyperbolic.

A model of heat transport

In this section we follow the approach of [7].2) Consider 
a chain of N + 1 nodes:

• −− • − ... − •
0       1            N

At each node there is a Hamiltonian system with n 
degrees of freedom, and the systems at j–1 and j are 
weakly coupled to each other (with a coupling   λ) for 
j = 1, …, N. Furthermore, the systems at 0 and N are 
coupled to external sources and one wants to study the 
heat flow (i. e., the energy flow) from 0 to N. A natural 
idea is to start with uncoupled systems at the nodes 0, 
1, …, N for λ = 0, and to use some sort of perturbation 
theory to study the coupled system for λ ≠ 0. The dy-
namics of the uncoupled system at node j takes place 
at fixed energy, i.e., on an energy shell of dimension 
2n–1. After coupling, the phase space has dimension  ≈  
(N+1)2n, so that we have a dimensional jump  ≈  N 
between the uncoupled and the coupled situation: this 
prevents a straight use of perturbation theory, which 
should take place on a manifold of fixed dimension.

A natural physical idea is to determine somehow a 
temperature β j

–1 for the system at node j in the coupled 
situation. We may then hope to apply perturbation 
theory to obtain a NESS ρ in dimension (N+1)(2n–1). 
Afterwards there remains the problem of studying the 
fluctuations in full-dimensional phase space. In what 
follows we shall see how to determine the NESS ρ in 
dimension (N+1)(2n–1), leaving open the problem of 
fluctuations in full dimension, for which we know no 
rigorous approach.3) In order to fix the temperature 
β j

–1 at the node j we use an isokinetic thermostat, i. e., 

a term in the evolution equation such that the kinetic 
energy at the node j remains constant, see the first 
 section. The temperature profile, i.e., the choice of the 
βj is obtained by fixing β0, βN, and requiring that the 
net rate of energy transfer from the IK thermostat to 
the node j vanishes for j = 1, …, N–1 (the IK thermostat 
removes thus the energy fluctuations which occur for 
the full Hamiltonian time evolution of the chain under 
study).

To make our model specific we take the uncoupled 
dynamics at the jth node to correspond to the geo-
desic flow at a velocity which is fixed at any value (not 
necessarily 1) on some compact manifold of negative 
curvature. This dynamics corresponds to a Hamiltoni-
an Hj(pj, qj) which is pure kinetic energy. The coupling 
between j–1 and j is given by a potential energy term λ 
W(qj–1, qj). Introducing IK thermostats gives the final 
dynamics, for which dHj/dt = 0: the kinetic energy at j 
is fixed at a value Kj corresponding to a temperature4) 
β j

–1 = 2Kj/(n–1). Dolgopyat’s perturbation result [6] 
referred to in the first section may be applied here to 
obtain the NESS ρ for the coupled thermostatted dy-
namics from the uncoupled state ρ0 to first order in λ, 
see formula (4). Since κ̂(0) in (4) is explicitly known, 
one can determine to first order in λ the temperature 
profile β j

–1 so that there is no net flux of energy from 
the thermostats to our system. As discussed above, this 
gives a description of heat transport along a coupled 
chain when energy fluctuations at each node are re-
moved. We must refer to [7] for a detailed discussion.5) 
In any case, our presentation shows the difficulty of a 
rigorous approach to the problem of heat transport: 
even choosing the unperturbed dynamics at the nodes 
to be Anosov, even removing energy fluctuations by 
IK thermostats, we face a difficult perturbation pro-
blem for a non-hyperbolic system. The non-hyperbo-
licity of the unperturbed system is because a product 
of Anosov dynamical systems (with continuous time) 
at each of our N+1 nodes is no longer hyperbolic. This 
has a physical basis since it reflects the near translation 
invariance of the chain of small systems which trans-
port heat.

Hydrodynamic turbulence

We discuss now a physical system formed by a finite 
volume of incompressible fluid, as described by the 
3-dimensional Navier-Stokes equation (or an analo-
gous equation: the precise form of the dissipation term 
will not be important in what follows). A traditional 
view of developed hydrodynamic turbulence is that en-
ergy is supplied to the fluid at large spatial wavelengths, 
cascades down to small wavelengths, and is dissipated 
there by viscosity: this is the turbulent energy cascade. 
The fluid motion is assumed to have a spatially homo-
geneous and isotropic probability distribution, and as 
a consequence many features of the fluid motion can 
be determined by dimensional arguments (i. e., the 
scaling properties of the hydrodynamic equation imply 

2) See the recent paper 
by Li and Young [8] for 
a number of references 
to other approaches 
(by Eckmann and 
coworkers, Young and 
coworkers, etc.)

3) An approximate de-
scription of fluctuations 
is provided by equilibri-
um fluctuation theory at 
temperature βj

–1 for the 
node j, but this ignores 
the long range correla-
tions known to be pre-
sent (see [9] and [10]). 
 Note that an approach to 
the problem of heat 
transport by Dolgopyat 
and Liverani [11] uses a 
macroscopic limit in 
which the fluctuations 
vanish. We shall however 
want to discuss fluctua-
tions in the problem of 
turbulence, see section 
“Hydrodynamic turbu-
lence”.

4) One can argue that in 
the presence of the IK 
thermostat, a denomina-
tor n–1 should occur in 
the following formula 
rather than n as expected.

5) In particular, choosing 
the βj such that the ener-
gy flux from the thermo-
stats vanishes exactly and 
not just to first order re-
quires a uniformity result 
for o(λ) which has not 
been proved at this time.
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that physical quantities scale in a definite manner with 
space and time). This is the heart of Kolmogorov theory 
[12], a very successful theory which fails however to 
predict correctly some velocity correlations. The rea-
son of the failure is intermittency: turbulence is actually 
not homogeneous.

The following is an attempt at a physical under-
standing of the energy cascade and intermittency, as 
proposed in [17]. The degrees of freedom of our fluid 
which correspond to sufficiently large spatial wave-
lengths constitute the inertial range, where viscous dis-
sipation is deemed unimportant. The degrees of free-
dom in the inertial range constitute in principle a finite 
Hamiltonian system6) coupled on one side to a source 
of energy (at large wavelength) and on the other side to 
dissipation (at small wavelength). An explicit Hamil-
tonian using a wavelet description of the degrees of 
freedom of the fluid and respecting the inviscid scaling 
should be possible to construct, but the construction 
will not be attempted here. Our point is that in this de-
scription the turbulent energy cascade is equivalent to 
a heat flow though a collection of coupled Hamiltonian 
systems.

The heat flow obtained here to describe turbulence 
differs from the heat flow model discussed in the prior 
section in two main respects: geometric structure and 
dynamical assumptions. As to geometric structure, in-
stead of coupled nodes forming a chain, we have now a 
hierarchy of nodes with a scaling such that the dimen-
sional arguments of Kolmogorov should be applicable 
(in particular we want the same number of degrees of 
freedom at each node). The nearest neighbor inter-
action postulated between nodes in the prior section 
would be reflected in our hierarchy by locality (like 
the locality of the interaction of Fourier modes usually 
assumed by turbulence theorists). The possibility to 
describe our system as a scaling hierarchical collection 
of Hamiltonian subsystems with weak local interac-
tions remains to be assessed, but we shall assume it in 
the following discussion. As to dynamical assumptions, 
we cannot realistically suppose that the Hamiltonian 
subsystems in our hierarchical collection are Anosov. 
We cannot therefore hope at this time for a rigorous 
dynamical analysis of our system.

Although a rigorous analysis escapes us, we have 
sufficient physical understanding of heat transport to 
draw some useful conclusions. The input of energy at 
large wavelength gives a macroscopic kinetic energy 
to a system with a relatively small number of degrees 
of freedom. In view of the smallness of the Boltzmann 
constant this corresponds to a huge temperature. We 
expect thus the energy cascade to go from large to 
small spatial wavelengths because this corresponds to 
heat going from large to small temperature (ultimately 
this is because entropy must increase with time). Our 
argument about heat flows requires some chaoticity 
assumption. Indeed it is known that heat transport can 
be pathological in completely integrable Hamiltonian 
systems [15]. The difference between 2- and 3-dimensi-
onal hydrodynamics with respect to the energy cascade 

can thus be understood because 2-dimensional invis-
cid flows have many conserved quantities (contrary to 
3-dimensional flows).

Identifying the turbulent energy cascade with a heat 
flow gives the correct direction of the cascade, but if 
we ignore microscopic fluctuations we cannot expect 
a description of this cascade other than that given 
by Kolmogorov theory, and dictated by dimensional 
arguments. Taking into account the microscopic fluc-
tuations, we can however hope to understand inter-
mittency. Since there is no good microscopic theory of 
nonequilibrium fluctuations, we shall use equilibrium 
fluctuation theory in the following manner. We assume 
that the ratio κ of sizes of subsystems in our hierarchy 
of nodes is such that a fluctuating temperature β j

–1 can 
be attributed to each node j (temperature imposed mo-
stly by the node of the next larger size) in such a way 
that the degrees of freedom at j have a Boltzmannian 
energy distribution corresponding to the tempera-
ture β j

–1 . Such an assumption is clearly approximate, 
but physically not unreasonable. The assumed local 
equilibrium fluctuations lead to fluctuating velocity 
differences over finite distances, which correspond 
to intermittency and deviate from the predictions of 
Kolmogorov theory. We have called κ the ratio of the 
linear size associated with one node in the hierarchy, 
and the size of the next smaller node. Our predictions 
for intermittency7) depend on κ, and comparison with 
experimental results [16] yield κ ≈ 20 or 25.

The above estimate for κ, which corresponds to 
κ3 ≈ 104, may appear very large. It does however make 
sense if we realize that the intermittency effects we are 
trying to understand have a complicated physical basis 
consisting of vorticity tubes being formed, stretched, 
folded, etc. In conclusion we have a physically reaso-
nable understanding of turbulence based on nonequi-
librium statistical mechanics.

Apparently simple problems often lead to very com-
plicated developments. Gödel’s incompleteness theo-
rem says something of that sort. Dynamical systems 
(for example z |→ λ z(1 – z) in the complex plane) give 
many examples of this situation. The evidence is that 
turbulence, if one goes beyond Kolmogorov theory, 
is a very complicated phenomenon, although based 
on simple equations. This is probably a warning that 
non equilibrium problems must often lead to intrinsic 
and unavoidable complications.

A definition of life

One can readily argue that the phenomena of life be-
long to nonequilibrium. Here we propose a definition 
of life based on nonequilibrium statistical mechanics: 
a slowly evolving nonequilibrium state contains life if, 
using a source of negentropy at atomic level, it steadily 
maintains structures containing a large amount of infor-
mation.

Living structures belong thus to the class of dissi-
pative structures:8) their existence depends on entropy 

6) A Hamiltonian de-
scription of fluid motion 
without dissipation has 
been given by Arnold [14] 
(the Hamiltonian is the 
total kinetic energy of 
the fluid).

7) Let |Δr(v)| be the velo-
city change |v(x')–v(x)| 
over a distance |x'–x| = r 
and write 〈|Δr(v)|p〉   rζp. 
For the exponent ζp we 
predict ζp = p/3–(lnκ)–1 

lnΓ(p/3+1) while Kolmo-
gorov theory gives 
ζp = p/3. Note that our 
prediction is based on 
approximate assump-
tions, and V. Yakhot has 
pointed out that our for-
mula for ζp must fail for 
p ≥  50. But the formula 
works well for the mode-
rate values of p for which 
measurements are 
available (and is exact for 
p = 3). We must refer to 
[17] for further details.
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production, i. e., on a source of negentropy (or a source 
of Gibbs free energy in the isothermal isobaric situati-
on appropriate to the life forms that we know). Struc-
tures containing a large amount of information are 
necessarily of relatively large scale. In the case familiar 
to us, the large scale structures are the living structures 
necessary to maintain and propagate genetic informa-
tion, and this information is slowly evolving. A slow 
evolution appears necessary for the creation of life (of 
any kind) because it takes time to invent self-sustaining 
structures with a large amount of information. Eventu-
ally, the appearance of intelligence changes the nature 
of the problem: think of the evermore efficient creation 
and transmission of information that humans have 
achieved.
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