
 © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim   1617-9437/11/0909-29 Physik Journal 10 (2011) Nr. 8/9 29

P r e i s t r ä g e r

The discoveries of slowness
Theoretical progresses in off-equilibrium behavior of glassy systems

Giorgio Parisi

Many systems approach equilibrium very slowly. Their 
equilibration time becomes macroscopic and is some-
times so large that it cannot be measured. Significant 
progress have recently been made in understanding 
the collective phenomena that are at the basis of this 
behavior, especially in structural glasses and spin 
glasses.

t he typical microscopic time scale in condensed 
matter physics is the picosecond. However some-
times the time to approach equilibrium is much 

larger (e. g. seconds, years ....). When the gap between 
the microscopic and the macroscopic time becomes ve-
ry large, the most common scenarios are the following: 
n There is a localized microscopic process with large 
activation energy that is responsible for the very large 
equilibration time. 
n All the localized microscopic processes are fast: there 
is no single very large energy barrier and the very slow 
behavior is a collective effect. 

The most well understood collective effects happen 
at a second order phase transition point where there 
are large-scale excitations that involve a large number 
of atoms. At the phase transition point the spatial 
correlation length diverges and at the same time scale 
becomes very large (critical slowing down): in this 
situation the characteristic times are much larger than 
the microscopic time, but usually they still remain mi-
croscopic (e. g. they diverge at the critical temperature 
Tc as |T–Tc|–1.4 with a prefactor that is of order of the 
microscopic time scale).

In other systems the characteristic time diverges 
much faster (e.g. exponentially) when we approach the 
transition temperature. In glycerol the characteristic 
time increases more than 10 orders of magnitude in a 
narrow temperature range (Fig. 1). It is remarkable that 
the characteristic times are extremely large in the whole 
low temperature phase: in the low temperature regime 
these systems are always (on human scale) in an off-
equilibrium situation: they are often called glasses. In 
these cases it may be convenient to speak of a collective 
barrier energy E(T) and to write the characteristic time 
τ as:

τ    τ0 exp(  E(T) ____ kT  )                                                          (1)

The divergence of τ reflects in a divergence in E(T): 
indeed the data in Fig. 1 show an increase of τ that is 

much faster than a simple Arrhenius law (i. e. a straight 
line in the right panel). The divergence in E(T) is a 
collective phenomenon that must be theoretically 
explained: we must discover which characteristics cor-
respond to a universal behavior, which are the univer-
sality classes.

These systems in the low temperature region are al-
ways in an off-equilibrium situation. The experimental 
data depend crucially on this fact. However the theo-
retical study of off-equilibrium systems is much more 
difficult than that of equilibrium systems, since in this 
case we no longer have a Boltzmann-Gibbs probability 
distribution. Therefore new tools and ideas are needed.

glassy systems

Structural glasses
In structural glasses like window glass or wax the vis-
cosity increases by 18 orders of magnitude when we 
decrease the temperature [1, 2]. In a first approximation 
the viscosity is the inverse of the characteristic time: we 
have a spectacular increase of the characteristic time 
from picoseconds to hours and more (it is difficult to 
measure characteristic times when they are much lar-
ger than one hour). The glass temperature Tg is defined 
as the temperature where the characteristic time is of 
the order of one hour. At temperatures less than Tg the 
system is always at non-equilibrium. 

Glasses are usually classified (although there is no 
sharp separation) as strong glasses or fragile glasses. 
In strong glasses the viscosity η is proportional to 
exp(B/T) (Arrhenius law) and in fragile glasses we have 
η    exp (B/T–TK) (Volker-Fulcher law).1)

The divergence of the characteristic time near Tg 
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k O M P a k t
n Significant progress have recently been made in under-

standing the collective phenomena that are at the basis 
of systems that approach equilibrium very slowly.

n An important example is aging in structural glasses and 
spin glasses.

n The theoretical predictions, experimental and nume-
rical results lead to generalized fluctuation dissipation 
relations and the definition of a scale dependent tem-
perature.

n This makes it possible to consider a space-time picture 
of the evolution of the system.
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is usually explained by assuming that the system may 
have an exponentially large number of local equili-
brium states, the dynamics is dominated by collective 
rearrangements on a scale ξ(T), the length ξ(T) being 
divergent as a power at Tc []. During these collective 
rearrangements the system must cross a free energy 
barrier that is proportional to an inverse power of ξ(T). 
This picture is quite old: the theoretical problem is to 
find a convincing framework where this scenario can 
be deduced from first principles and more detailed 
predictions can be done. The replica approach is par-
ticular promising in this respect [, 6]. A great amount 
of work has been done constructing soluble models 
where such a scenario is realized.

Spin glasses
Spin glasses are another prototypical glassy system [7]. 
Here the disorder is quenched; i. e. it is already present 
in the Hamiltonian. Spin glasses are realized in nature 
in many ways, e. g. in the alloys Fe5 Au95. In this case 
the interaction between two iron spins (RKKY) is pro-
portional to sin(2kF r)/ r3.

The simplest model for Ising spin glasses has the 
Hamiltonian:  

HJ  =  ∑
i,k 

Ji,k σi σk                                                              (2) 
where σ = ± 1, i and k are neighbors. The J‘s are random 
quenched variables (they take both signs). Some bonds 
are ferromagnetic, some are antiferromagnetic and it is 
impossible to find a configuration such that Ji,k σi σk  <  0, 
∀ i,k. Finding the ground state is a difficult task (in 
all senses). Minimal descent brings the system in a 
local minimum, but there are many local minima (an 
exponentially large number of minima). From an ana-
lytic point of view finding the ground state is an NP-
complete problem, i. e. in the worst case any algorithm 
takes an exponentially large CPU time. We could ex-
pect that a physical system will take an incredibly large 
time to reach equilibrium at low temperatures.  

In the 70’s John Mydosh and collaborators found the 
first good experimental evidence of a transition. Deep 
theoretical studies of spin glass theory started with the 
Sherrington Kirkpatrick model. This model is concep-
tually simple and it defines the mean field theory of 
spin glasses. Unfortunately the theory of spin glasses 
is difficult. It took a long time to understand this 
mean-field theory and there are still open problems. 
At present we can compute analytically nearly all the 
static properties. The dynamics is more complex. Some 
quantities are under control, others not. In some lucky 

1) There is a debate 
whether the Volker-Ful-
cher law is correct below 
Tg or if at lower tempera-
tures there must be a 
crossing to the Arrheni-
us law. In this note I will 
assume that the Volker-
Fulcher law is correct 
and that we have a real 
transition, as suggested 
from the data in Fig. 1.

Fig. 1 In glycerol the maximum of the imaginary part of the 
dielectric susceptibility (as function of the frequency) is pro-
portional to the inverse of the characteristic time (a). The cha-

racteristic time as function of the inverse temperature (at 
various pressures) increases faster than a simple Arrhenius law 
(b, straight line). 

Fig.  The analytic 
results for the SK 
model (a) agree 
very well with the 
experimental data 
(b) on metallic 
spin glasses [].
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cases we can compute dynamic in terms of static (equi-
librium) quantities.

One of the main prediction of the mean field (repli-
ca) approach is the existence of the different suscepti-
bilities: 
n χLR, i.e. the response within a state, that is observable 
when one changes the magnetic field at fixed tempera-
ture and one does not wait too much.
n χeq, the true equilibrium susceptibility, that is very 
near to χFC , i. e. the field cooled susceptibility, where 
one cools the system in presence of a field. 

The similarities between the pure mean field predic-
tions and the experimental data are striking (Fig. ).

Further predictions of mean field theory

Mean field theory predicts the existence of an expo-
nentially large number of valleys in the free energy 
landscape. In the simpler case the number of valleys as 
function of the free energy of the valley F is

N(F)    exp[βV (F–F0)]                                              (3)

with βV  <  β. This formula recalls N(E)  ∝  exp[β (E–E0)] 
that is equivalent to dS/dE  =  β, S being the entropy. 
When we stay in an off-equilibrium situation, Cuglian-
dolo and Kurchan [10] suggested that we can measure 
two temperatures: one for the configurations inside the 
valley and one for the valleys, depending on the time 
scale used for the measurements. 

n At short times we measure the standard temperature 
measured with fast thermometers. 
n At long times we measure βV using slow thermome-
ters that are affected by the jumping between valleys. 

The key tool is a generalization of the fluctuation 
dissipation theorem at equilibrium. At equilibrium 
we have a relaxation function R(t) and the correlation 
function C(t) in a system at equilibrium. For a magne-
tic system, where M(t) is the total magnetization we 
can define the response functions as R(t) = ∂M(t) / ∂h, 
where h is a field that is added at time zero and C(t) is 
the correlation of the magnetization, i. e. 〈M(t) M(0)〉. 
We can obtain a very neat formulation if we eli-
minate the time t in a parametric way by defining 
R(C). The fluctuation dissipation theorem states that 
dR / dC =  –1/ T. Indeed in the text-book formulation 
one uses the response function r(t) and one writes the 
equivalent formula:

r(t) ≡   R(t) ____ dt   = –  1 __ T     dC(t) _____ dt   .                                                  (4)

The generalized off-equilibrium fluctuation dissipa-
tion relations are similar. We start from an high tempe-
rature system and cool the system at the final tempera-
ture at time –tw. We define C(tw,t) = 〈M(t) M(0)〉. In the 
same way we define the relaxation function R(tw,t). In 
the limit tw  →  ∞ at fixed t, we recover the equilibrium 
correlation and response functions. The dependence 
of the correlation C(tw,t) on both variables is quite 
complex: in Fig.  we show the correlation C(tw,t) as 
function of t at different tw (in a first approximation 

Fig.  The two-times correlation function 
c(tw,t) in 3–d spin glass. The data corre-
spond to 1011 time steps for systems with 
half a million spins [9]. The different curves 
correspond to different values of tw.

Fig. 4 The relaxation function versus correlations in three di-
mensional spin glasses. At the left simulations (with an absolu-

te theoretical prediction) and at the right experimental data.
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C(tw,t) ≈  C(t/tw)) introducing in this way a time depen-
dent effective temperature. Also in this case for large 
values of tw we eliminate the time (t) in a parametric 
way. The final form of the off-equilibrium fluctuation 
dissipation relation is

  dR ___ dC    = –   1 ____ T(C)    ,                                                                 (5)

where T(C) is an effective temperature. In the simplest 
two temperatures scenario we have for C  >  Cplateau, 
T(C) = T, while, for C  <  Cplateau, T(C) = TV = 1/βV.

 These predictions have been verified both in nume-
rical simulations and in experiments with spin glasses 
(Fig. 4). Similar results and very clear results are ob-
tained for numerical simulations for structural glasses 
(e. g. Silica), while the experimental situation for struc-
tural glasses is more confusing.

the space-time picture

Systematic corrections to mean field can be computed 
and in this way we obtain information about the evolu-
tion of the system in space an time. The main predic-
tion is that at equilibrium in a region of size L there are 
quite different valleys that have similar free energies. 
The relative difference of these free energies strongly 
depends on the boundary conditions.

What we expect if we start the dynamics from an 
high temperature (random) configuration? The system 
will be inside one of these valleys if we observe on a 
scale less than ξ(t) and it will be completely disordered 
on a scale larger than ξ(t). We expect that the system at 
large times has dynamic heterogeneities. The dynamics 
length ξ(t) is the scale of the correlated movement that 
happens at time t (cooperatively moving regions): i. e. 
a whole region of size ξ(t) moves from one valley to an 
other valley [12–16].

The presence of dynamic heterogeneities, i. e. of co-
operatively rearranging regions, can be well studied in 
simulations. We have two configurations σ, one at time 
zero (σ(0)), one at time t (σ(t)). The global correlation 
is C(t) = V–1 ∑x σ(x,0) σ(x,t) . The local correlation is gi-

ven by qD(x)  ≡  σ(x,0) σ(x,t). Dynamical heterogeneities 
correspond to the presence of spatial correlations in 
qD(x) at large distances: C2,2(x,t)  =  〈qD(x) qD(0)〉. This is 
exactly what we expect in the case of correlated move-
ment on a large scale.

The presence of long range correlations in the dy-
namics is the smoking gun for the existence of crucial 
collective phenomena in the dynamics and strongly 
supports the need of considering the glass transition as 
a critical phenomenon that belongs to a quite different 
universality class from more well understood second 
order phase transitions. The properties of these long-
range correlations are strongly studied these days.

In the case of spin glasses we can also compute 
theoretically dynamical heterogeneities in an equi-
librium ensemble: in other words we can compute 
some equilibrium correlations that can be shown to 
be equal to the dynamical correlations. This may be 
possible if we concentrate our attention on the function 
C2,2(x|C) ≡  C2,2(x, t(C)), t(C) being the inverse of C(t) 
[17–19]. To this end we consider two replicas in a box 
of size L as before. The local overlap q(x) between two 
configurations σ and τ is given by q(x)  =  σ(x) τ(x). We 
can also compute the equilibrium correlations among 
q(x) at a given value of the global overlap q  ≡  V–1∑x q(x). 
This gives the equilibrium correlations C(x|q) that can 
be proved [20] to be magically equal to the dynamical 
correlation C22(x|C). A more precise argument can be 
done in order to take care of finite volume effects in 
C(x|q) and of finite tw effects in C2,2(x,t) (Fig. 5).

We have just seen that studying dynamical quantities 
as functions of other dynamical quantities (i. e. elimina-
ting time) is a great simplification: it allows us to obtain 
absolute predictions for the dynamical heterogeneities. 
This approach is quite promising and I am sure that it 
will give rise to new very interesting results and it will 
also provide a new useful way of presenting data.
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