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P R E I S T R Ä G E R

Statistical mechanics relates the behavior of macro-

scopic objects to the dynamics of their constituent 

microscopic entities. Primary examples include the 

entropy increasing evolution of nonequilibrium 

systems and phase transitions in equilibrium systems. 

Many aspects of these phenomena can be captured 

in greatly simplified models of the microscopic world. 

They emerge as collective properties of large aggre-

gates, i.e. macroscopic systems, which are indepen-

dent of many details of the microscopic dynamics.

N
ature has a hierarchical structure, with time, 

length and energy scales ranging from the sub-

microscopic to the supergalactic. While there are 

many new phenomena as one proceeds from the con-

sideration of individual entities to that of aggregates, 

there are apparently no new fundamental laws and 

explanations always go from smaller to larger scales.

Even so, the specific form of complex higher level 

phenomena cannot in general be deduced, in any 

direct way, from the behavior of their microscopic 

constituents: think of the weather and the properties 

of air molecules. In fact, due to the scale separation 

between different levels, it is often possible and some-

times essential to discuss different levels independently 

– quarks are really irrelevant for biological processes 

and atoms are a distraction when studying ocean 

currents. Still, deeper understanding requires that the 

cooperative behavior of an aggregate be traced back to 

properties of its constituents.

Statistical mechanics is the bridge between the world 

of the atom and the world of the object. We live in the 

latter world but wish, for aesthetic as well as for prac-

tical reasons, to understand the former. Statistical me-

chanics provides a framework for describing how well-

defined higher level patterns of organized behavior may 

result from the undirected activity of a multitude of in-

teracting individual entities. The subject was developed 

for relating macroscopic thermal phenomena to the 

microscopic dynamics of atoms and molecules. Some of 

these phenomena can be understood as the additive ef-

fects of the actions of individual atoms, while others are 

paradigms of emergent cooperative behavior, having no 

direct counterpart in the properties or dynamics of the 

microscopic constituents considered in isolation.

An example of the former is the pressure exerted by 

a gas on its container; this is just the sum of impulses 

due to atoms colliding with the walls. A particularly 

important example of the latter is the tendency of an 

isolated macroscopic system to evolve towards equili-

brium − a state characterized by the maximization of 

the entropy under the relevant constraints. The expla-

nation of why and how such time asymmetric collective 

behavior arises from completely reversible microscopic 

dynamics is one of the great achievements of the foun-

ders of statis tical mechanics, James Clerk Maxwell, 

William Thomson (Lord Kelvin) and Ludwig Boltz-

mann. An other paradigm of emergent phenomena, well 

explained by statistical mechanics, are phase transitions 

in equilibrium systems, such as occur in the boiling or 

freezing of a liquid. Here, dramatic changes in structure 

and behavior of the macroscopic system are brought 

about by small changes in the temperature or pressure. 

These changes occur without any change in the indivi-

dual atoms or molecules making up the material.

Statistical mechanics is a very active field today, but 

 rather than trying to describe the latest results I will 

focus on the two fundamental issues of macroscopic 

irreversibility and phase transitions in equilibrium sys-

tems. There is still much misunderstanding of the first 

issue and much beauty in the interaction between ma-

thematics and physics in elucidating the second. I can 

clearly only give an outline here and refer the reader 

to some of my own work as well as to a selected list of 

reviews and original writings. For details see references 

at end.
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Macroscopic Irreversibility: Problem and 
Resolution 

In the world about us the past is distinctly different 

from the future. Milk spills but doesn’t unspill, eggs 

splatter but do not unsplatter, waves break but do not 

unbreak, we always grow older, never younger. These 

processes all move in one direction in time − they 

are called „time-irreversible“ and define the arrow of 

time. It is therefore very surprising that the relevant 

fundamental laws of nature make no such distinction 

between the past and future. These laws permit all pro-

cesses to be run backwards in time. This leads to a great 

puzzle − if the laws of nature permit it why don‘t we 

observe the above mentioned processes run backwards? 

Why does a video of an egg splattering run backwards 

look ridiculous? Put another way: how can time-rever-

sible motions of atoms and molecules, the microscopic 

components of material systems, give rise to observed 

time-irreversible behavior of our everyday world?

In the context of Newtonian theory, the „theory 

of everything“ at the time of Thomson, Maxwell and 

Boltzmann, the problem can be formally presented as 

follows: the complete microscopic (or micro) state of a 

classical system of N particles is represented by a point 

X in its phase space Γ, 

X = (r, p, r, p, ..., rN, pN), 

ri and pi being the position and momentum (or velo-

city) of the ith particle. When the system is isolated, 

say in a box V with reflecting walls, its evolution is go-

verned by Hamiltonian dynamics with some specified 

Hamiltonian H(X) which we will assume for simplicity 

to be an even function of the momenta: no magnetic 

fields. Given H(X), the microstate X(t), at time t, 

determines the microstate X(t) at all future and past 

times t during which the system will be or was isolated: 

X(t)  = Tt–t
X(t). Let X(t) and X(t + τ), with τ posi-

tive, be two such microstates. Reversing (physically or 

mathematically) all velocities at time t + τ, we obtain 

a new microstate. If we now follow the evolution for 

another interval τ we find that the new microstate at 

time t + 2τ is just RX(t), the microstate X(t) with all 

velocities reversed: 

RX  =  (r,–p, r, – p, ..., rN, – pN). 

Hence if there is an evolution, i. e. a trajectory X(t), 

in which some property of the system, specified by a 

function f (X(t)), behaves in a certain way as t increa-

ses, then if f (X) =  f (RX) there is also a trajectory in 

which the property evolves in the time reversed direc-

tion.

Thus, for example, if the energy density or tem-

perature inside the box V gets more uniform as time 

increases, e. g. in a way described by the diffusion 

equation, then, since the energy density profile is the 

same for X and RX, there is also an evolution in which 

the density gets more nonuniform. So why is one type 

of evolution, the one consistent with an entropy in-

crease in accord with the „second law“, common and 

the other never seen? The difficulty is illustrated by the 

impossibility of time ordering of the snapshots in Fig. 1 

using solely the microscopic dynamical laws: the above 

time symmetry implies that if (a, b, c, d) is a possible 

ordering so is (d, c, b, a).

The explanation of this apparent paradox, due to 

Thomson, Maxwell and Boltzmann, as described in 

references [1−13], shows that not only is there no conflict 

between reversible microscopic laws and irreversible 

macroscopic behavior, but, as clearly pointed out by 

Boltzmann in his later writings1), there are extremely 

strong reasons to expect the latter from the former. 

These reasons involve several interrelated ingredients 

which together provide the required distinction bet-

ween microscopic and macroscopic variables and 

explain the emergence of definite time asymmetric 

behavior in the evolution of the latter despite the total 

absence of such asymmetry in the dynamics of the 

former. They are:
■ the great disparity between microscopic and 

macroscopic scales,
■ the fact that the events we observe in our world are 

determined not only by the microscopic dynamics, 

but also by the initial conditions of our system, which, 

if taken back far enough, inevitably lead to the initial 

conditions of our universe, and
■ the fact that it is not every microscopic state of a ma-

croscopic system that will evolve in accordance with 

the entropy increase predicted by the second law, but 

only the „majority“ of such states − a majority which 

however becomes so overwhelming when the number 

1) Boltzmann‘s early 

writings on the subject 

are sometimes unclear, 

wrong, and even contra-

dictory. His later wri-

tings, however, are gene-

rally very clear and right 

on the money (even if a 

bit verbose for Maxwell‘s 

taste. [7]) The presenta-

tion here is not intended 

to be historical.

Fig. 1 How would you order this se-

quence of „snapshots“ in time? Each 

 represents a macroscopic state of a sys-

tem containing, for example a fluid with 

two „differently colored“ atoms or a solid 

in which the shading indicates the local 

temperature.

a                                                                                                b

c                                                                                                d
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of atoms in the system becomes very large that irrever-

sible behavior becomes effectively a certainty.

To make the last statement complete we shall have 

to specify the assignment of weights, or probabili-

ties, to different microstates consistent with a given 

macro state. This is usually resolved by assuming some 

form of „equal a priori probabilities“ (EAPP). Note, 

however, that since we are concerned with events 

which have overwhelming probability, many diffe-

rent assignments are equivalent and there is no need 

to worry unduly about having a unique assignment. 

 The EAPP are however a „natural“ choice. It is based 

on phase space volume (or dimension of Hilbert 

space in quantum mechanics). More precisely, let ΓMα
 

be the region in the phase space Γ corresponding to 

the macrostate Mα. We can write this as M(X)  = Mα. 

Then, for a system in the macrostate Mα the proba-

bility of its microstate X being in dX � ΓMα
 is equal to 

|dX|  /  |ΓMα
| where |A| indicates the Liouville volume 

 of a region A � Γ.

Using such considerations enabled Boltzmann to 

define the entropy of a macroscopic system in terms of 

its microstate and to relate its change, as expressed by 

the second law, to the Hamiltonian evolution of that 

microstate. It is in the time evolution of the macro-

states corresponding to „typical“ microstates that we 

observe irreversible behavior [1–2].

Boltzmann connected the second law with phase 

space volume considerations by making the obser-

vation that for a dilute gas log |ΓMeq
|, where Meq is the 

macrostate corresponding to the systems being in equi-

librium at a given energy, is proportional, up to terms 

negligible in the size of the system, to the equilibrium 

thermodynamic entropy of Clausius. He then extended 

this relation between thermodynamic entropy and 

log |ΓMeq
| to all macroscopic systems; be they gas, liquid 

or solid. This provided a microscopic definition of 

the operationally measurable entropy of macroscopic 

systems in equilibrium.

Having made this connection Boltzmann then ge-

neralized it to define an entropy also for macroscopic 

systems not in equilibrium, implicitely used by Clausi-

us in his formulation of the second law of thermodyna-

mics. To do this, he associated with each microscopic 

state X of a macroscopic system a number SB which 

depends only on M(X) given, up to multiplicative and 

additive constants, by

SB(X)  =  SB(M(X))               (1) 

with

SB(M)  =  k log|ΓM|.              (2) 

Following O. Penrose [10], I shall call SB the Boltzmann 

entropy of a classical system. (I have deliberately writ-

ten (1) and (2) as two equations to emphasize their 

logical independence which is useful for the discussion 

of quantum systems, where X is replaced by the wave 

function or density matrix and |ΓM| is the dimension of 

the linear subspace of the Hilbert space corresponding 

to the macrostate M [1e].)

Boltzmann then used the fact that the ΓM correspon-

ding to different macrostates have enormously diffe-

rent phase space volumes, to explain (in agreement 

with the ideas of Maxwell and Thomson) the observa-

tion, embodied in the second law of thermodynamics, 

that when a constraint is lifted, as in Fig. 1, an isolated 

macroscopic system will evolve toward a state with 

greater entropy.2)

In effect Boltzmann argued that due to the large 

differences in the sizes of ΓMα
, SB(X)   =  k log |ΓM(X)| will 

typically increase, as X(t) evolves in time, in a way 

which explains and describes qualitatively the evolu-

tion towards equilibrium of macroscopic systems. 

What distinguishes increasing t from decreasing t are 

the initial conditions, to which some form of EAPP can 

be applied, see [1–2] and [11–13].

These very large differences in the values of |ΓM| 

for different M come from the very large number of 

particles (or degrees of freedom) which contribute, 

in an (approximately) additive way, to log|ΓM|. This is 

also what gives rise to typical or almost sure behavior. 

Typical, as used here, means that the set of microstates 

corresponding to a given macrostate M for which the 

evolution leads to a macroscopic increase (or non-

decrease) in the Boltzmann entropy during some fixed 

macroscopic time period τ occupies a subset of ΓM 

whose Liouville volume is a fraction of |ΓM| which goes 

very rapidly (exponentially) to one as the number of 

atoms in the system increases. The fraction of „bad“ 

microstates, which lead to an entropy decrease, thus 

goes to zero exponentially fast as N   →   ∞.

Typicality is what distinguishes macroscopic irre-

versibility from the weak approach to equilibrium of 

probability distributions (ensembles) of systems with 

good  ergodic properties having only a few degrees of 

freedom, e.  g. two hard spheres in a cubical box. While 

the former is manifested in a typical evolution of a sin-

gle macroscopic system the latter does not correspond 

to any appearance of time asymmetry in the evolution 

of an individual system. Maxwell makes clear the im-

portance of the separation between microscopic and 

macroscopic scales when he writes [14]: „the second law 

is drawn from our experience of bodies consisting of 

an immense number of molecules. ... it is continually 

being violated, ..., in any sufficiently small group of mo-

lecules... As the number ... is increased ... the probability 

of a measurable variation ... may be regarded as prac-

tically an impossibility.“ This is also made very clear by 

Onsager in [15] and should be contrasted with the confu-

sing statements found in many books that thermodyna-

mics can be applied to a single isolated particle in a box.

On the other hand, because of the exponential in-

crease of the phase space volume with particle number, 

even a system with only a few hundred particles, such 

as is commonly used in molecular dynamics computer 

simulations, will, when started in a nonequilibrium 

„macrostate“ M, with „random“ X  �  ΓM, appear to 

behave like a macroscopic system.3)

This will be so even when integer arithmetic is used 

in the simulations so that the system behaves as a truly 

2) When M specifies a 

state of local equilibri-

um, SB(X) agrees up to 

negligible terms, with 

the „hydrodynamic en-

tropy“. For systems far 

from equilibrium the 

definition of M and thus 

of SB can be more pro-

blematical. For a dilute 

gas in which M is speci-

fied by the smoothed 

empirical density f(r, v) 

of atoms in the six di-

mensional position and 

velocity space, SB(X) = 

–k ∫ f (r, v) log f (r, v) 

dr  dv. Boltzmann’s fa-

mous H theorem is thus 

an expression of the se-

cond law applied to the 

macro state specified by f. 

It was argued in [2] that 

such an H theorem must 

hold whenever there is a 

deterministic equation 

for the macrovariables of 

an isolated system. 

When the poten tial 

energy is not negligible 

one has to add to f(r, v) 

also information about 

the energy density [2].

3) After all, the like-

lihood of hitting, in 

the course of say one 

thousand tries, some-

thing which has proba-

bility of order 2–N is, for 

all practical purposes, 

the same, whether N is 

a hundred or 10. Of 

course the fluctuation in 

SB both along the path to-

wards equilibrium and in 

equilibrium will be larger 

when N is small [2b].
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isolated one; when its velocities are reversed the system 

retraces its steps until it comes back to the initial state 

(with reversed velocities), after which it again proceeds 

(up to very long Poincaré recurrence times) in the 

typical way [16].

We might take as a summary of such insights in the 

late part of the nineteenth century the statement by 

Gibbs [17] quoted by Boltzmann (in a German transla-

tion) on the cover of his book Lectures on Gas Theory II 

[6]: „In other words, the impossibility of an uncompen-

sated decrease of entropy seems to be reduced to an 

improbability.“

Phase Transitions in Equilibrium Systems

Information about the equilibrium phases of a homo-

geneous macroscopic system is conveniently encoded 

in its phase diagram. Phase diagrams can be very 

complicated but their essence is already present in the 

familiar, simplified two dimensional diagram for a one 

component system like water or argon. This has axes 

marked by the temperature T and pressure p, and gives 

the decomposition of this thermodynamic parameter 

space into different regions: the blank regions generally 

correspond to parameter values in which there is a 

unique pure phase, gas, liquid, or solid, while the lines 

between these regions represent values of the parame-

ters at which the system can exist in two different pure 

phases. At the triple point, the system can exist in any 

of three pure phases.

In general, a macroscopic system with a given Ha-

miltonian is said to undergo or be at a first-order phase 

transition when the temperature and pressure, or more 

generally the temperature and chemical potentials, 

do not uniquely specify its homogeneous equilibrium 

state. The different properties of the pure phases coexis-

ting at such a transition manifest themselves as discon-

tinuities in certain observables, e. g. a discontinuity in 

the density as a function of temperature at the boiling 

point. On the other hand, when one moves between 

two points in the thermodynamic parameter space 

along a path which does not intersect any coexistence 

line the properties of the system change smoothly.

I will now sketch a mathematically precise formula-

tion of what is meant by coexistence of phases. This is a 

beautiful part of the developments in statistical mecha-

nics in the past fifty years, which is essential to a full 

understanding of the singular behavior of macrosco-

pic systems at first order phase transitions, e.g. the 

discontinuity in the density mentioned earlier. These 

singularities can only be captured precisely through 

the infinite volume or thermodynamic limit (TL) de-

scribed below; a formal mathematical procedure in 

which the size of the system becomes infinite while the 

number of particles and energy per unit volume (or the 

chemical potential and temperature) stay fixed. While 

at first sight entirely unrealistic, such a limit repre-

sents an idealization of a macroscopic physical system 

whose spatial extension, although finite, is very large 

on the microscopic scale of interparticle distances or 

interactions. The advantage of this idealization is that 

boundary and finite size effects present in real systems, 

which are frequently irrelevant to the phenomena of 

interest, are eliminated in the TL. We always implicitly 

take such a limit when we speak of intensive properties 

of a material.

My starting point here is the Gibbs formalism 

for calculating equilibrium properties of macrosco-

pic systems as ensemble averages of functions of the 

microscopic state of the system. While the use of 

ensembles was anticipated by Boltzmann and indepen-

dently discovered by Einstein, it was Gibbs who, by his 

brilliant systematic treatment of statistical ensembles, 

i. e. probability measures on the phase space, developed 

them into a useful elegant tool for relating, not only 

typical but also fluctuating behavior in equilibrium sys-

tems, to microscopic Hamiltonians. In a really remar-

kable way the formalism has survived essentially intact 

the transition to quantum mechanics. Here, however, I 

restrict myself to classical mechanics.4)

The key to the success of ensembles in predicting 

properties of macroscopic systems, is that for a system 

of N particles, N >> 1, we are generally interested only 

in the values of sum functions of X = (r, p, ..., rN, pN). 

There are functions which can be written as a sum of 

terms involving only a small number of particles, e. g.

F()(X)  =  ∑ f(ri, pi), 

F()(X)  = ∑i, j f (ri, pi, rj, pj), 

(with f(ri, pi, rj, pj)  → 0 when |ri – rj|  → ∞), etc. Familiar 

examples are the kinetic and potential energies of the 

system. Common macroscopic properties then corres-

pond to sum functions which, when divided by the vol-

ume |V|, are essentially constant on the energy surface 

ΣE of a macroscopic system. Consequently, if we take 

the TL, defined by letting N  →  ∞, E →  ∞, and |V|  → ∞ in 

such a way that N/|V|  → ρ and E/|V|  → e, then these pro-

perties assume deterministic values, i. e. their variances 

go to zero. They also become (within limits) indepen-

dent of the shape of V and the nature of the boundaries 

of V. As a less familiar concrete example, let f(ri,pi)  =  

(p i
/2m), the square of the kinetic energy of the ith 

particle. Then, in the TL, |V|– F(X)  →  (9/4) ρT (e,ρ) for 

typical X, with T the temperature of the system given by 

[∂s(e,ρ)/∂e]–, with s(e,ρ) the TL of |V|– log |ΣE|.

It is this property of sum functions, of having the 

same value for almost all microstates X� ΣE which 

makes meaningful the use of probabilities, or ensem-

bles, to describe the equilibrium behavior of individual 

macroscopic systems, as was true for the approach 

to equilibrium discussed in the previous section. In 

particular it assures the „equivalence“ of ensembles: 

microcanonical, canonical, grand canonical, pressure, 

etc. for computing equilibrium properties. They can all 

be used in the TL to determine the phase diagram as 

well as the correlation functions. These are translation 

invariant and independent of boundary conditions in 

regions of the phase diagram where the system has a 

unique phase.

4) It is clearly impossible 

to cite here all or even a 

significant fraction of all 

the good reviews and 

textbooks on the subject. 

The reader would do well 

however to browse 

among the original works 

and in particular Gibbs‘ 

beautiful book [18]. A 

partial list of books and 

reviews with a mathema-

tical treatment of Gibbs 

measures and phase tran-

sitions which contain the 

results presented here 

without references can be 

found in [19] and [1d].
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To actually obtain the phase diagram of a system 

with a given Hamiltonian is a formidable mathematical 

task. It has still not been solved even for such simple 

continuum systems as particles interacting via a Len-

nard-Jones pair potential. I will therefore switch now 

to lattice systems for which such results are available.

Lattice systems can be considered approximations 

to the continuum particle systems (the cell theory of 

fluids) or as representations of spins in magnetic sys-

tems [19]. I shall consider for simplicity the Ising model 

on a simple cubic lattice, �d, in d dimensions. At each 

site x � �d there is a spin variable S(x) which can take 

two discrete values, S(x) = ± 1. The configuration of the 

sys tem in a region V � �d containing |V| sites, is deno-

ted by SV. There is an interaction energy U which is a 

sum of single site and pair interactions, assumed to be 

translation invariant, and boundary terms,

U(SV|S̄Vc)  = –h  ∑  
x�V

       S(x) –    1 __ 2     ∑  
x,y�V

         ∑              u (x – y)S(x) S(y)

                     –  ∑  
x�V

       {  ∑  
y�Vc

        u(x – y) S̄(y)}S(x).                  (3) 

In (3) S̄ (y) denotes the preassigned value of the spin 

variables at sites y in V c, the complement (or outside) 

of V, which act as boundary conditions (bc).

When the system is in equilibrium at temperature T, 

the probability of finding the configuration SV is given 

by the Gibbs formula [19]

μV(SV|b)  =    1 _______ 
Z(J; b,V)

    exp[–β U (SV | b)]                     (4) 

where β–  =  kT, and Z is the partition function,

Z(J; b,V)  =   ∑  
 SV

           exp[–β U(SV | b)].                               (5) 

The sum in (5) is over all possible microscopic confi-

gurations of the system in V and we have used J to refer 

to all the parameters entering Z through the interac-

tions (including β) while b represents the bc specified 

by S̄Vc. The Gibbs free energy density of the finite sys-

tem is given by

Ψ(J; b,V) � |V|– log Z(J; b,V).                                   (6) 

To take the TL we let the size of V become infinite whi-

le keeping J fixed in such a way that the ratio of surface 

area to volume goes to zero.

It is one of the most important rigorous results of 

statistical mechanics, to whose proof many have con-

tributed [19] that when the interactions decay in a sum-

mable way, the limit V →�d of (6) in fact exists and is 

independent of the boundary condition b

Ψ (J; b,V)  →  Ψ(J).               (7) 

We shall call Ψ(J) the thermodynamic free energy 

density. It has all the convexity properties of the free 

energy postulated by macroscopic thermodynamics 

as a stability requirement on the equilibrium state. 

We now note that as long as V is finite, Z(J; b,V) is 

a finite sum of positive terms and so Ψ(J; b,V) is a 

smooth function of the parameters J (including β and 

h) en tering the interaction. This is also true for the 

probabilities of the spin configuration in a set A � V, 

μV(SA|b) obtained from the Gibbs measure (4) or equi-

valently the correlation functions. In other words, once 

b is specified, all equilibrium properties of the finite 

system vary smoothly with the parameters J. The only 

way to get non-smooth behavior of the free energy or 

non uniqueness of the measure is to take the TL. In that 

limit the b-independent Ψ(J) can indeed have singula-

rities. Similarly, the measure defined by a specification 

of the probabilities in a fixed region A � �d, μ̂(SA|b̂), 

can depend on the way in which the TL was taken and 

in particular on the boundary conditions at „infinity“, 

here denoted symbolically by b̂  [19].

To see this explicitly, let us specialize even further 

and consider isotropic nearest neighbor interactions

u(r)  = 
 { J,  for |r|  =  1

               0,  otherwise             
(8)

 

with J constant. For this model the effect of the 

 spins outside V, S̄Vc, is just to produce an additional 

magnetic field hb(x), for x on the inner boundary of 

V. The finite volume free energy Ψ(J, J; b,V), where 

β h  = J and  β J  = J, is then clearly real analytic for all 

J, J �  (–∞, ∞). The phase diagram of this system after 

taking the TL is given in Fig. 2 where we have used 

axes labeled by h/|J| and J
–. Note that J > 0 (J < 0) 

corresponds to ferromagnetic (antiferromagnetic) 

interactions.

For the ferromagnetic Ising model, corresponding to 

the upper half of this figure, almost everything is known 

rigorously. In the region where the magnetic field h is 

not zero, both Ψ(J, J) and the infinite volume Gibbs 

measure, i. e. the μ̂(SA|b̂), are independent of the bc and 

are real analytic in J and J. The analyticity results follow 

from the remarkable Lee-Yang theorem [19] which states 

that for J ≥ 0 fixed, the only singularities of Ψ(J, J) 

(corresponding to zeros of the parti tion function) in the 

complex J plane occur on the line Re J  = 0. Uniqueness 

of μ̂ follows from an argument combining the Lee-Yang 

theorem with the equally remarkable Fortuin, Kaste-

leyn, Ginibre (FKG) inequalities [19].

Furthermore, for small values of |J|, Ψ is analytic in 

both J and J and the measure μ̂ is unique. This fact, 

Fig. 2 Schematic phase diagram of nearest neighbor Ising 

 model on a simple cubic lattice in dimensions d  ≥  2. The 

ground states of the antiferromagnetic system are degenerate 

for  |h|  ≤  2 |J|d. For d  =  1, Tc  = 0.

h/|J |
2d–2d 0

Tc (d)/J

T/J

–Tc (d)/J
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which holds for general interactions at high tempera-

tures, follows either from the existence of a convergent 

high temperature expansion for Ψ and for the correla-

tion functions in powers of β or from the Dobrushin-

Shlosman uniqueness criterion [19]. On the other hand 

for J =  0 and J large enough there is the ingenious ar-

gument due to Peierls, made fully rigorous by Dobrus-

hin and by Griffiths [19] which proves that in dimensi-

on d ≥  2, the probability that the spin S(x) has value +1 

is different for „b =  +“ and „b =  –“, corresponding to bc 

for which S̄ (y)  =  +1, or S̄ (y)  =  –1, respectively, for all 

y outside V. The crucial point of the Peierls argument 

is that this difference persists no matter how large V is: 

the probability being greater (less) than 1/2 for + (–) bc. 

This implies that the average value of the magnetiza-

tion is positive at low temperatures for + bc, even when 

h  =  0, in the TL. By symmetry the opposite is true for – 

bc. Thus for J  =  0 and J large,  the limiting Gibbs mea-

sures μ̂+ and μ̂–  (obtained with  + or – bc), which can be 

shown to exist, are different. It is this nonuniqueness of 

the Gibbs measure μ̂, for  specified J, which corresponds 

to the coexistence of phases in macroscopic systems.

The expected value of S(x) in the „+ state“, denoted 

by m*(β), is independent of x and is equal to the value 

of the average of the magnetization in all of V obtained 

when one lets h  →  0 from the positive side after taking 

the TL. (Remember that μ̂ and hence the magnetiza-

tion, m(β,h), is independent of bc for h ≠ 0). It can be 

further shown, using the second Griffiths inequality 

that m*(β) is monotone increasing in β. Hence there 

is, for a given J > 0, a unique critical temperature, Tc , 

such that for h  =  0 and T < Tc, m
*(β) > 0 while for T > Tc, 

m*(β) =  0. Tc depends on the dimension d, Tc(d) > 0 for 

d ≥ 2, Tc(1)  = 0.

There is a unique infinite volume Gibbs measure for 

T ≥  Tc and (essentially) only two, μ̂+ ands μ̂–, extremal, 

translation invariant (TI) Gibbs measures for T < Tc. 

The latter means that every infinite volume TI Gibbs 

measure μ̂b is a convex combination of μ̂+ and μ̂–, i. e.

μ̂(SA|b̂)  =  α μ̂+(SA) + (1 – α) μ̂–(SA),                            (9) 

for some α, 0 ≤ α  ≤ 1. For periodic or free bc α  =  1/2 by 

symmetry, so that μ̂p  = μ̂f  = 1/2(μ̂+ + μ̂–). This means phy-

sically that when V is large the system with „symmetric“ 

bc will, with equal probability, be found in ei ther the 

„+ state“ or in the opposite „– state“. Of course as long as 

the system is finite it will „fluctuate“ between these two 

pure phases, but the „relaxation times“ for such fluctua-

tions grows (for any reasonable dynamics) exponentially 

in |V|, so the either/or description  correctly captures the 

behavior of macroscopic sys tems. This phenomenon is 

the paradigm of spontaneous symmetry breaking which 

occurs in many physical situations.
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