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S O F T W A R E

When performing computations to 
answer questions concerning the 
design of optical components, sev­
eral different numerical methods 
can be used. Which method to 
choose depends on the size of the 
component and the nature of the 
electromagnetic wave propaga tion. 
Very accurate general­purpose me­
thods, so­called full­wave methods, 
are frequently used for designing 
micro­ and nano­optical devices, 
whereas approximate meth ods 
such as ray tracing are needed for 
macroscopic lens systems. 

C omputational high-frequency 
electromagnetics software 

utilizes an array of general-purpose 
numerical methods, including finite 
difference, spectral, method-of-mo-
ments, and finite element methods. 
With these tools, engineers are able 
to analyze propagating waves in op-
tical structures with a minimal set 
of physical assumptions. Over the 
years, these methods have been suc-
cessfully applied to the analysis of 
components such as optical fibers, 
directional couplers, and ring reso-
nators. These general methods are 
sometimes referred to as full-wave 
methods. The name conveys that 

there are no inherent approxima-
tions other than those coming from 
creating a digital model by discre-
tizing the piecewise continuous op-
tical media. In this way, phenomena 
such as diffraction and low-order 
mode resonances can be captured 
by virtually arbitrary accuracy by 
simply refining the level of discre-
tization (Fig. 1).

In case of the finite difference 
method, refining the level of dis-

cretization roughly means inserting 
more points in the computational 
domain so that the electromag-
netic field can be represented in 
a smoother fashion, and similarly 
for other methods. However, more 
discretization points mean higher 
computational cost. For a 3D ana-
lysis, the number of discre tization 
points, or elements, scale as the 
cube of the wavelength due to the 
Nyquist criterion. You need to have 
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Fig. 2 A full-wave finite element analysis 
of electromagnetic waves that scatter 
off a metallic sphere. The electric field 
variations make it necessary to use a fine 
mesh throughout the computational do-
main. As a consequence of the Nyquist-

Shannon sampling theorem, each wave-
length needs to be resolved with at least 
two sampling points to avoid aliasing. 
This leads to a requirement of at least 
a handful of finite elements per wave-
length in each spatial direction.

Fig. 1 A full-wave 
finite element 
analysis showing 
the finite element 
mesh (left) and 
one of the trans-
verse modes of a 
single-mode fiber 
at 1.2 μm (right)
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at least two sampling points per 
wavelength in each coordinate di-
rection, and even more in practice. 
The actual computational cost of 
the underlying numerical methods 
typically scales even worse, so that 
full-wave methods are of limited 
use when the relative number of 
wavelengths of the object of interest 
is large. 

For example, an optical fiber 
may be a few wavelengths across 
but many billions of wavelengths in 
the extruded direction. To analyze 
the propagating modes in the trans-
verse direction of a cross section of 
a fiber, you can use one of the com-
putationally expensive full-wave 
methods, since the relative size is 
small in this direction. However, to 
analyze the propagation down the 
fiber, including potential defects 
along the way, you may need to 
resort to approximate methods to 
avoid exhausting your computer’s 
RAM (Fig. 2).

Approximate methods

Approximate methods like ray 
tracing, Gaussian optics, and beam 
propagation methods come with 
inherent simplifying assumptions. 
In special cases, these methods can 
be applied to much larger struc-
tures than full-wave approaches. 
For example, a centimeter-sized 
lens corresponds to tens of thou-
sands of wavelengths of optical 
light in all directions. In this case, 
a ray tracing approach may be the 
best option. The approximations 
come at a cost: Using ray tracing 
typically implies that diffraction 
effects are neglected: The rays are 
simply traveling in straight lines 
(Fig. ). 

The beam envelope method

A guiding structure in an optical 
system often has a well-defined and 
preferred propagation direction. 

In the language of mathematical 
physics, this means that there is 
a well-defined wave vector that is 
varying slowly, or even constant, 
in the direction of propagation. 
This is utilized in a relatively new 
computational method called the 
beam envelope method, which is a 
full-wave method with some of the 
characteristics of an approximate 
method.

If we consider just the electrical 
field of a propagating wave, it has, 
in the most generic case, three com-
ponents:

E = (Ex, Ey, Ez).

Each of the three field components 
can be a function of all three co-
ordinate directions; for example, 
Ex = Ex(x, y, z). However, if there is 
a preferred direction of propaga-
tion, say the z direction, then for 
an optically guiding component, 
this usually means that the field 
goes through many oscillations in 
the z direction while experiencing 

Fig.  For analyzing electromagnetic wave propagation in a 
system of lenses, the most commonly used methods are based 
on ray tracing.

Fig.  (a) The beam envelope method 
solves the slowly varying electric field 
envelope E1 by separating out the quick-
ly varying part. After the solution for the 
slowly varying part is obtained by means 
of a computation method the full-wave 
field is obtained by simply multiplying 

the quickly varying part. (b) The beam 
envelope method allows for a much 
sparser set of sampling points than 
conventional full-wave methods. The 
reduction in the number of sample 
points, or nodes, can be in the  orders 
of magnitude.

electric �eld
E(x)

electric �eld envelope
                                 E1(x)

E(x) = E1(x) exp(–jk1x)

a electric �eld
E(x)

electric �eld envelope
                                 E1(x)

E(x) = E1(x) exp(–jk1x)

b

Fig. 5 A ring resonator analysis at 
1.559 μm: Shown are the finite element 

mesh (a), the physical fast-varying field 
(b), and the slowly varying field envelope 

(c), which is the actual unknown field sol-
ved for in the beam envelope method.

a    b    c
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much slower variations in the x and 
y directions. Therefore, for a con-
tinuous single-frequency electro-
magnetic wave, we may choose to 
write the field as

E = E  cos(ωt – kz z)

where ω = 2π f is the angular 
frequency, kz is the propagation 
constant in the z direction, z is the 
z coordinate, and E is the slowly 
varying part of the field.

Note that there may still be 
z-variations in the slowly varying 
field. To clarify this, we may write 
it out more explicitly as

E (x, y, z, t) = E (x, y, z) 
              cos(ωt – kzz)

This expression, or rather its 
complex-valued counterpart 
E = E exp[j (ωt – kzz)], can now be 
substituted into the full electromag-
netic wave equations according to 
Maxwell. After some algebra, we 

will end up with an equation in on-
ly the slowly varying envelope field 
E. In a strike of mathematical for-
tune, all terms involving the quickly 
varying factor exp[j (ωt – kz z)] can 
be cancelled from the equation. We 
just need to remember to multiply 
with this factor after our calculation 
to get back the true wave represen-
tation. This fortunate cancellation 
of the quickly varying part of the 
field forms the basis of the beam 
envelope method. This should 
not be confused with the beam 
propagation method, which comes 
with additional simplifications and 
associated approximations result-
ing from throwing out some of the 
derivatives in the wave equation. 
The beam envelope method comes 
with no approximation but belongs 
to the class of full-wave methods 
(Fig. a).

In which way does this mathe-
matical trick help us? It all comes 

down to beating the Nyquist crite-
rion. A major obstacle when using 
full-wave methods is that you have 
to sample the field with enough 
computational points, or nodes. 
If not, your computational result 
will be numerical garbage. By on-
ly sol ving for the slowly varying 
envelope field, the computational 
points can be sampled much more 
sparsely; at least in cases when 
there is a distinct direction of 
propagation, such as in an optical 
waveguide (Fig. b).

Variable and multiple directions

Being able to analyze long slen-
der structures with a more or less 
constant direction of propagation 
is important. It is fairly straightfor-
ward to see how to apply the beam 
envelope method to such cases. 
How ever, a large class of guiding 
structures is bent in one or more 
directions. Can the method also be 
applied in these cases? The answer 
is yes, if the structure is not too 
complicated. As long as the direc-
tion of propagation is slowly vary-
ing, the method is in good shape. 
To see how this works, we need to 
consider the full propagating field   
E = E exp[j (ωt – kzz)] again. Here, 
the direction of propagation is 
hardwired to be in the z direction. 
In order to handle a generic direc-
tion, we need to write this instead 
as E = E exp[j (ωt – k · r)], where 

Fig. 7 A self-focusing laser beam ana-
lysis by means of the beam envelope 
method: The true aspect ratio represen-
tation is shown in the top panel and a 
compressed view in the bottom. The 
mag nitude and z component of the 
slowly varying envelope electric field 
are shown as isosurface and slice plots. 
The actual physical oscillations of the 
electromagnetic wave are too fast to be 
visualized. The structure is 20 cm long 
and the wavelength in the propagating 
direction is 0.7 μm, which makes for 
about 300 000 wavelengths in the pro-
pagating direction.

Fig. 6 Slowly varying field enve lopes in 
a symmetric laser cavity: In this case, 
two propagating directions are nee-
ded for the forward- and backward-pro-

pagating waves, respectively. This is 
achieved by superimposing two waves 
in each direction.
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k = (kx, ky, kz) is the propagation 
constant vector, which determines 
the wave’s preferred direction of 
propagation, and r = (x, y, z) is the 
coordinate vector.

In practice, you set the dot pro-
duct k ∙ r = kx x + ky y + kz z equal to 
a spatially varying phase function 
φ(x, y, z) = k ∙ r. The requirement 
of a slowly varying direction of 
propagation now gets translated 
into a slowly varying phase. For 
example, the circular part of a 
ring resonator of radius R can be 
represented by a phase function 
φ = R kp arctan(y/x), where kp = 
2π/λp is the propagation constant 
corresponding to the wavelength 
λp in the direction of propagation.

In this way, the beam envelope 
method can be applied to a struc-
ture composed of simple shapes, 
where each component can be 
represented by a spatially varying 
phase factor corresponding to a 
locally preferred type of propaga-
tion. For example, a ring resonator 
consisting of one straight and one 
circular section can readily be 
analyzed this way by using one 
constant and one circular phase 
function. In a more general case, 
the phase function can be given 
by a look-up table that is a simple 
enough function of the coordinate 
vector. In addition, by superim-
posing fields, you can handle two 
or more directions of propagation 
by supplying multiple sets of phase 
functions (Fig. 5 and Fig. 6).

Applications in nonlinear optics

Nonlinear optical effects are often 
very weak and occur over long in-
teraction lengths. Here, the beam 
envelope method is very useful. 
Self-focusing is such a nonlinear 
phenomenon where the modifi-
cation of the beam must be incor-
porated into the design. The effect 
may be seen, for example, in laser 
rods or glass components placed 
at a focal point. If the threshold 
for self-focusing is exceeded, the 
material is damaged. It is important 
to know the self-focusing thresh-
old values for the used materials. 
Self-focusing occurs in dielectrics, 

like optical glasses and laser rod 
materials, such as Nd:YAG.

Other nonlinear effects for 
which the method is applicable in-
clude second harmonic generation, 
sum- and difference-frequency 
generation, parametric generation 
and amplification, and self-phase 
modulation (Fig. 7).

Conclusions and outlook

The beam envelope method ex-
tends the use of full-wave methods 

to previously unattainable model 
sizes. It fills a gap between com-
putationally heavy, but accurate, 
traditional finite element/difference 
methods and fast-to-compute ray 
tracing methods. Successes within 
nonlinear optics show the method’s 
applicability for real-world design 
tasks. In future, we will most likely 
see this method being combined 
with traditional full-wave and 
ray-tracing methods to reach new 
frontiers in computational optics.
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