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Analog zum gerichteten Strom-
fluss in einer elektrischen Diode 

ermöglichen optische Isolatoren eine 
uni direktionale Lichttransmission 
entlang einer ausgezeichneten Rich-
tung. Sie kommen in zahlreichen An-
wendungen der Telekommunikation 
zum Einsatz, um beispielsweise das 
Signal-zu-Rausch-Verhältnis der über-
tragenen Information zu verbessern. 
Zudem helfen sie, Laserinstabilitäten 
zu reduzieren, indem sie eine starke 
Rückstreuung in die verwendete Laser-
lichtquelle vermeiden. Um einen op-
tischen Isolator zu realisieren, muss das 
verwendete System ein nichtreziprokes 
Verhalten aufweisen: Die Brechung 
der Zeitumkehrinvarianz macht vor-
wärts und rückwärts laufendes Licht 
unterscheidbar [1, 2]. Dazu muss das 
System das Licht zeitlich fortschreitend 
anders transmittieren als für negative 
Zeiten. Im Bereich der Optik gibt es 

mehrere Möglichkeiten, ein nicht-
reziprokes Verhalten zu realisieren. In 
der Magnetooptik gelingt dies mittels 
des Faraday- Effekts, der die Drehung 
der Polarisationsrichtung einer linear 
polarisierten Lichtwelle beim Durch-
gang durch ein isotropes Medium un-
ter Einfluss eines starken Magnetfeldes 
beschreibt [3]. Eine Alternative sind 
nichtlineare Effekte wie der optische 
Kerr-Effekt, also die intensitätsabhän-
gige Änderung des Brechungs index. 
Ein weiterer, neuer Ansatz besteht da-
rin, akusto-optische Effekte auszunut-
zen, wie die Wechselwirkung von Licht 
mit akustischen Anregungen, zum Bei-
spiel mittels der Brillouin-Streuung. 
Für die optische Isolation ist hier der 
Wellencharakter der akustischen An-
regungen entscheidend, da die akus-
tische Welle, die sich entlang einer 
ausgezeichneten Richtung ausbreitet, 
die Zeitumkehrinvarianz bricht. 

Photonische Kristallfasern (Photo-
nic Crystal Fibers, PCF) stellen eine 
Art Lichtwellenleiter dar, der eine 
periodische Anordnung von Mikro- 
und Nanokanälen entlang der Faser-
achse nutzt, um Licht transversal 
einzuschließen. Die Eigenschaften 
des Lichts wie Dispersion oder Inten-
sitätsprofil entlang der Faser lassen 
sich in einzigartiger Weise beeinflus-
sen [4]. Basierend auf bedeutenden 
technologischen Verbesserungen hat 
sich jüngst das Forschungsgebiet der 
verdrillten photonischen Kristall-
fasern etabliert [5]. Wissenschaftlich 
interessant ist die strikte Periodizität 
im Millimeterbereich entlang der Fa-
serachse: Ähnlich der elektronischen 
Zustände, die sich in einem perio-
dischen atomaren Poten tial in einem 
Halbleiter formieren, ergeben sich in 
einer solchen Faser charakteristische 
Eigenzustände, die chiralen Bloch-
Moden. Diese neuartigen Zustände, 
die ein wirbelartiges Intensitätspro-
fil mit verschwindender Amplitude 
im Zentrum aufweisen (sog. Vor-
texmoden), treten nur in verdrill-
ten Systemen auf und können einen 
Bahndrehimpuls tragen. Sie haben in 
der Quanten- und Telekommunika-
tion zu intensiver Forschungstätig-
keit geführt. Für eine abhörsichere 
Kommunikation im Quantenbereich 
lassen sich Vortexzustände beispiels-
weise verschränken und stellen einen 
zusätzlichen Freiheitsgrad dar. In der 
klassischen Nachrichtenübertragung 
dienen sie dazu, die Informations-
kapazität zu steigern. Daher erscheint 
die Realisierung verschiedener faser-
integrierter Ansätze zur Manipulation 
von Vortexstrahlen von zunehmend 
großer Bedeutung. 

Eine aktuelle Arbeit am Max-
Planck-Institut für die Physik des 
Lichts in Erlangen stellt ein konkretes 
Konzept vor, um experimentell einen 
integrierten Isolator für Vortex-
strahlen auf Basis akusto-optischer 

Licht in ausgewählter Richtung
Basierend auf akusto-optischen Wechselwirkungen ermöglichen chirale photonische Kristallfasern, 
die Leistung ausgewählter Vortexmoden gezielt zu verstärken oder abzuschwächen. 
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Abb. 1 In einer chiralen photonischen Kristallfaser kann sich eine akustische Welle (a, 
braun) ausbreiten. Der Spin und die Richtung der azimutalen Phasen von Brillouin-Signal 
(rot) und Pumplicht (blau) bleiben erhalten. Im Querschnitt (b) unterscheiden sich die 
verwendeten chiralen Fasertypen. Die Intensitätsverteilung im Kern (c) stimmt für verschie-
dene Moden, die sich in den chiralen photonischen Kristallfasern ausbilden, in Experiment 
und Simulation überein.
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Wechselwirkungen in chiralen pho-
tonischen Kristallfasern zu realisie-
ren (Abb. 1a) [6]. Birgit Stiller und 
Kollegen nutzten als Konzept das 
Topologie-sensitive Streuverhalten 
optischer Moden an einer akustischen 
Welle aus, welche sich entlang einer 
ausgewählten Faserrichtung in einer 
chiralen photonischen Kristallfaser 
ausbreiten (Abb. 1b): Starke Brillouin-
Streuung und damit ein starkes Signal 
der rückwärts gestreuten optischen 
Welle (Stokes-Welle) tritt nur für 
eine bestimmte Kombination von 
Spin- und Bahndrehimpulsen von 
Pumpwelle und gestreuter Welle auf. 
Sind die Auswahlregeln nicht erfüllt, 
passiert die chirale Mode (Abb. 1c) die 
Kristallfaser ungestört. Das macht die 
vorwärts- und rückwärtslaufenden 
Moden effektiv diskriminierbar. Ent-
scheidend für das in dieser Arbeit vor-
gestellte Konzept ist der Einsatz der 
chiralen photonischen Kristallfaser: 
Sie ermöglicht es erstmals, gleichzei-
tig die Vortexmoden in einem Faser-
wellenleiter präzise zu kontrollieren 
und eine intensive akusto-optische 
Wechselwirkung innerhalb des Faser-
kerns zu realisieren. Die Pumpwelle 
dient dabei als Kontrolllicht, um das 
gestreute Signal zu beeinflussen und 
eine Ausbreitungsrichtung gezielt zu 
bevorzugen oder zu unterbinden. Ins-
besondere agiert dieser Mechanismus 
zudem modenselektiv. Somit wählt 
die Kontrollpumpe eine bestimmte 
Topologie, also eine bestimmte Kom-
bination von Polarisation und Bahn-
drehimpuls einer Mode aus, wäh-
rend alle anderen Modentopologien 
unbeeinflusst bleiben. Das ermög-

licht es, bestimmte chirale Moden 
abzu schwächen oder zu verstärken. 
Aufgrund der Verstärkung ist die-
se Vorrichtung als akusto-optischer 
Leistungsverstärker oder -abschwä-
cher für eine ausgewählte Mode zu 
betreiben. 

Birgit Stiller und Kollegen konnten 
im Einzelnen in der Arbeit experi-
mentell zeigen, dass die Hinzunahme 
des Kontroll-Pumpstrahls bei einer 
ausgewählten Frequenz einen Si-
gnalstrahl effektiv diskriminiert. Das 
System lässt sich daher als nichtrezi-
proker Verstärker oder Abschwächer 
konfigurieren, indem die Frequenz 
des Kontrolllasers angepasst wird. In 
der Arbeit gelang es, eine sehr hohe 
Vortexstrahl-Diskriminierung von 
22 Dezibel nachzuweisen (Abb.  2), 
die einem Abschwächungsfaktor von 
etwa 160 entspricht – ein Wert, der 
für akusto-optische Isolatoren bei 
der Grundmode den Stand der Tech-
nik darstellt. 

Somit ist es in dieser Arbeit erst-
mals gelungen, ein vielverspre-
chendes Konzept für einen moden-
selektiven Isolator für Vortexstrahlen 
zu demonstrieren. Dieser basiert auf 
dem Prinzip der akusto-optischen 
Wechselwirkung, realisiert mittels 
Brillouin-Streuung. Wichtig ist hier-
bei, dass die generierte akustische 
Welle nur in eine Ausbreitungsrich-
tung propagiert, also die Reziprozität 
bricht, und dass alle involvierten Mo-
den der Spin- und Bahndrehimpuls-
erhaltung genügen müssen. Aufgrund 
des nahezu komplett faserintegrierten 
Aufbaus empfiehlt sich das Konzept 
für zahlreiche Anwendungen, von 

der Telekommunikation über Faser-
laser bis hin zur Quanteninforma-
tionsverarbeitung und optischen 
Manipulation.
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Adieu, sterile Neutrinos
Das STEREO-Experiment nimmt seit 2017 Da-
ten am Kernforschungsreaktor des Instituts 
Laue-Langevin in Grenoble. In zehn Metern 
Entfernung vom Reaktor und abgeschirmt 
von der äußeren Umgebung sucht es mit 
beispielloser Präzision nach sterilen Neutri-
nos. Dieser zusätzliche Neutrino-Zustand, 
der nicht über die schwache Wechselwirkung 
agiert, könnte gemessene Anomalien in Anti-
neutrino� üssen von Kernreaktoren oder die 
Natur der Dunklen Materie erklären. Im 
STEREO-Experiment würde sich ein steriles 
Neutrino durch eine positionsabhängige Ver-

zerrung der gemessenen Energieverteilung 
verraten. Bisher konnte das die französisch-
deutsche Kollaboration, die STEREO betreibt, 
aber nicht beobachten – im Gegensatz zu 
mehr als 100 000 Neutrinos. Damit lässt sich 
die Existenz steriler Neutrinos mit einer sta-
tistischen Sicherheit von mehr als 95 Prozent 
ausschließen.

The STEREO Coll., Nature 613, 257 (2023)

Ferroelektrischer Supraleiter
Ein Forschungsteam aus den USA und Japan 
hat nachgewiesen, dass zweidimensionales 
orthorhombisches Molybdän-Ditellurid 

(Td-MoTe2) unterhalb seiner Sprungtempe-
ratur zur Supraleitung von 2 K auch ferro-
elektrisch ist. Diese Kombination galt als 
unmöglich, weil sich Supraleitfähigkeit und 
makroskopische elektrische Polarisierung 
widersprechen. In Td-MoTe2 sind die Eigen-
schaften gekoppelt: Dreht ein äußeres elek-
trisches Feld die Richtung der Polarisierung 
um, wird aus dem Supraleiter ein normallei-
tendes Metall. Daher könnte Td-MoTe2 – je 
nach angelegtem Feld – als Magnetfeldsen-
sor, Photonendetektor oder Qubit agieren.

A. Jindal et al., Nature 613, 48 (2023)

Kurzgefasst 

Abb. 2 Für verschiedene Topologien verläuft die ge-
messene Signalabschwächung der rückgestreuten Welle 
als Funktion der Leistung ähnlich. Experimentelle Daten 
(Punkte) und theoretische Vorhersagen (Linien) zeigen 
jeweils eine signifikante Signalabschwächung um 22 dB.
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