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Ein Lichtmodulator (im Hintergrund) pragt einem Laserstrahl eine
raumliche Struktur auf, die sich mittels Langzeitbelichtung sicht-

bar machen lasst.

QUANTENOPTIK

Strukturierte Photonen

Photonen mit schraubenartiger Phasenstruktur besitzen einen Bahndrehimpuls und er6ffnen
in der Grundlagenforschung und fiir Quantentechnologien neue Moglichkeiten.

Robert Fickler

Licht, dessen Eigenschaften nur quantenoptisch zu be-
schreiben sind, ist als Quantenlicht bekannt. Seit vielen
Jahrzehnten liefert es kontinuierlich neue Erkenntnisse
in der Grundlagenforschung und initiiert die Entwick-
lung neuer Technologien und deren Anwendungen.
Die technischen Fortschritte in der Modulierung von
Licht zusammen mit neuen Erkenntnissen in der Quan-
teninformation eroffnen neue Moglichkeiten wie die
Anwendung hochdimensionaler Quantenzustande oder
das Zusammenspiel verschiedener Eigenschaften von
Photonen. Das hat zu einem duBlerst erfolgreichen Wis-
senschaftsgebiet gefiihrt: der Erforschung und Anwen-
dung strukturierter Photonen.
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ie vieles in der modernen Physik geht die Idee von
W Photonen, also einzelnen Lichtquanten, auf Al-

bert Einstein zuriick. In einer Arbeit aus dem Jahr
1905 erklérte Einstein den photoelektrischen Effekt durch
die Existenz von Photonen und gab somit der von Max
Planck zuvor heuristisch eingefithrten Konstante eine phy-
sikalische Bedeutung. In den spaten 1920er-Jahren erhielt
das Konzept der Photonen im Zuge der Quantisierung des
elektromagnetischen Feldes eine formalere Basis. Photonen
sind demnach die Feldquanten des elektromagnetischen
Feldes. Ihre Eigenschaften sind durch die Freiheitsgrade
des Lichts gegeben, also durch die Lichtmoden, die durch
Photonen angeregt werden. Die Schwingungsfrequenz v der
ebenen Lichtwelle entspricht der Energie des Lichtquants
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(E = hv), der Wellenvektor k bezieht sich auf dessen Im-
puls [p = (h/2n)k = hk], und die Polarisation beschreibt
den Spindrehimpuls eines Photons (S = +/). Besonders
die Polarisation von Photonen stand in den vergangenen
Jahrzehnten im Fokus: Zum einen untersuchte die Grund-
lagenforschung verbliiffende Effekte wie die Uberlagerung
zweier Zustande, Quantenverschrankung oder Quanten-
teleportation. Zum anderen wurden bereits frith Anwen-
dungen dieser Quanteneffekte vorangetrieben, sodass Ge-
rate zur Quantenkommunikation oder Quantencomputer
bereits verfiigbar sind bzw. bald verfiigbar sein werden.
Der Siegeszug der Photonen und die Untersuchung ihrer
grundlegenden Quanteneigenschaften gipfelten in der Ver-
gabe des letztjahrigen Physik-Nobelpreises an John Clau-
ser, Alain Aspect und Anton Zeilinger fiir ihre quanten-
optischen Experimente zur Verschriankung [1].
Interessanterweise wurde ein weiterer Freiheitsgrad des
Lichts vor nicht allzu langer Zeit erstmals beschrieben: der
Bahndrehimpuls. Les Allen, J. P. (Han) Woerdman und
Kollegen brachten diesen 1992 mit der transversalen Pha-
senstruktur in Verbindung [2]. Diese Arbeit war die Initial-
ziindung fiir das duflerst ergebnisreiche Forschungsgebiet
des strukturierten Lichts. Die Wissenschaftler zeigten,
dass Licht mit einer um die optische Achse ansteigenden
Phase, d. h. einer schraubenartigen Phasenfront, einen
zusétzlichen Drehimpuls besitzt. Im Gegensatz zum Spin-
drehimpuls, der eine Teilchendrehung um die eigene Ach-
se bewirkt, kann der neu entdeckte Drehimpuls zu einer
Drehbewegung um die optische Achse fithren. Er entspricht
somit einem Bahndrehimpuls (Abb. 1). Dieser Bahndreh-
impuls des Lichts ist definiert als L = +/¢, wobei ¢ die Win-
dungszahl ist, die dem Vielfachen eines azimutalen Phasen-
anstiegs um 2w entspricht. Die ndhere Betrachtung zeigt,
dass solche ,,Lichtschrauben® entlang der optischen Achse

Abb.1 Photonen mit schraubenartiger Phase besitzen Donut-férmige Inten-
sitdtsstrukturen. Die Phasenstruktur kann unterschiedlich stark ansteigen und
rechts- bzw. linksdrehend sein: Sie ist mit einem positiven bzw. negativen quanti-
sierten Bahndrehimpuls |+£) verbunden. Im linken Bild deutet dies der graue Pfeil
an. Die runden Insets zeigen eine haufig verwendete zweidimensionale Darstel-
lung des Phasen- und Intensitétsverlaufs in einem Querschnitt des Lichts.
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alle moglichen Phasenwerte zugleich annehmen miissten.
Da dies unmoglich ist, weist ein solcher Lichtstrahl an die-
sem Punkt keine Intensitét auf. Mathematisch entspricht
dies einer Phasensingularitit entlang der optischen Achse.
Eine Kameraaufnahme des Lichts gleicht daher einem Do-
nut, d. h. einem hellen Ring mit dunklem Zentrum.

Der experimentelle Nachweis dieses Drehimpulses ge-
lang der Gruppe um Halina Rubinsztein-Dunlop im Jahr
1995 mittels optischer Pinzetten [3]. Diese frithen Arbeiten
zeigten, dass die transversale raumliche Struktur von Licht
nicht nur komplexe Formen annimmt, sondern auch zu
interessanten Eigenschaften wie einem Bahndrehimpuls
fihrt. Der Startschuss in der Quantenoptik folgte 2001 mit
dem ersten experimentellen Beleg einer schraubenartigen
Phasenstruktur einzelner Photonen [4]. Die Gruppe um
Anton Zeilinger wies zudem nach, dass zwei Photonen
in ihrem Bahndrehimpuls verschriankt sein konnen. Die
Windungszahl € gilt somit als Quantenzahl. Basierend auf
diesen Resultaten entwickelte sich ein duflerst lebendiges
Forschungsgebiet innerhalb der Quantenoptik, das nicht
nur neue Erkenntnisse in der Grundlagenforschung lie-
fert, sondern auch fiir zukiinftige Quantentechnologien
entscheidend ist. Bevor wir einige aktuelle Forschungsfra-
gen und ihre Anwendungen beleuchten, gilt es zu kléren,
wie man strukturierte Photonen im Labor erzeugt und
untersucht.

Was sind strukturierte Photonen?

Die Eigenschaften von Photonen sind direkt mit den
Freiheitsgraden des Lichts verkniipft. Die einfachste Art,
Lichtstrahlen zu beschreiben, sind ebene Wellen. Doch
eine einzelne Elementarwelle ist unphysikalisch, da diese
notwendigerweise unendlich ausgedehnt ist. Ein realis-
tischer Lichtstrahl, etwa der eines Lasers, muss immer in
der Ebene senkrecht zur Ausbreitungsrichtung begrenzt
sein. Eine solche raumliche Begrenzung ist bei Laserstrah-
len gewohnlich ein rundes Profil in Form einer Gaufischen
Intensitatsverteilung. Bei nicht allzu starker Fokussierung
lasst sich ein solcher Strahl durch die paraxiale Wellenglei-
chung beschreiben, d. h. eine transversale Welle, bei der die
Amplitude in transversaler Richtung moduliert ist. Diese
Amplitudenstruktur ist als rdumliche Mode des Lichts be-
kannt. Die paraxiale Wellengleichung erlaubt als Losung
neben der fundamentalen Gauf3-Mode auch beliebig viele
Moden héherer Ordnung mit komplexeren Strukturen.
Diese breiten sich, ebenso wie eine Gauf$-Mode von der
natiirlichen Divergenz abgesehen, unverdndert im Raum
aus. Sie sind stabil und heiflen daher ausbreitungsinvariant.
Zudem ergeben sich verschiedene Modenfamilien, die je-
weils eine vollstandige Menge an orthogonalen Moden
bilden, also eine Basis darstellen, um sdmtliche Lichtfelder
zu beschreiben. Obwohl es keine ausgezeichneten Mo-
denfamilien gibt, sind Laguerre-Gauf3-Moden besonders
popular. Sie ergeben sich als Losung der paraxialen Wel-
lengleichung in Zylinderkoordinaten und verdanken ihren
Namen den herangezogenen Polynomen. Sie besitzen eine
schraubenartige Phasenstruktur und somit einen Bahn-
drehimpuls (Abb. 2).
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Abb.2 Lichtmoden des
Zylinderkoordinatensystems
heilen Laguerre-GauB-Moden
und kénnen eine schrauben-
artige Phasenstruktur besitzen,
die durch die Quantenzahl £
gekennzeichnet ist. Hohere
Ordnungen kénnen zusatzliche

Was bedeuten diese raumlichen Strukturen bzw. Moden
fiir einzelne Photonen? Zuniachst entspricht die Intensitats-
verteilung der Wahrscheinlichkeit, mit der ein Photon an
einer bestimmten Stelle zu finden ist. Eine Kamera, die
einzelne Lichtteilchen detektieren kann, registriert somit
ein Photon, das sich in dieser Mode befindet, zufillig auf
einem ihrer Pixel. Die Intensitatsverteilung der Moden-
struktur entspricht hier der Detektionswahrscheinlichkeit.
Durch Aufsummieren vieler Detektionen einzelner Pho-
tonen in der gleichen Mode offenbart sich ihre Struktur
(Abb. 3). Die Einzelphotonen-Aufnahmen zeigen somit
den Teilchencharakter des Photons in Form eines einzel-
nen Pixels. Zugleich tritt der Wellencharakter des Photons
an der transversalen Struktur der Mode als Losung einer
Wellengleichung hervor.

Quantenzustande in hohen Dimensionen

Zusitzlich zum fundamentalen Welle-Teilchen-Dualismus
der Photonen ist es fiir Quantenexperimente besonders
wichtig, dass sich einzelne Photonen nicht nur in einer
einzelnen Mode befinden konnen, sondern auch in einer
kohirenten Uberlagerung verschiedener Moden. Ahnlich
der Uberlagerung zweier Pfade in einem Doppelspalt-
experiment und dem daraus resultierenden Interferenz-
muster ergibt sich bei der Detektion strukturierter Pho-
tonen durch die Uberlagerung zweier oder mehrerer
Moden eine neue, oftmals komplexere Modenstruktur
(Abb. 4). Die Komplexitit der Strukturen eines einzelnen
Photons verdeutlicht eindrucksvoll, welches Potenzial in
strukturierten Photonen schlummert: In der Quanten-
informationsverarbeitung konnen orthogonale Moden
als Quanteninformationstrager dienen. Aufgrund der
unbegrenzten Anzahl an raumlichen Moden sind sie ein
hervorragender Kandidat, um hochdimensionale Quan-
tenzustdnde physikalisch zu realisieren. Im Gegensatz
zu den bekannten Qubits, also den zweidimensionalen
Quantenzustinden |0) und |1), haben hochdimensionale
Quantenzustinde (Qudits) d mogliche Zustinde: |0), 1),
|2), ..., |d). Der zugrunde liegende Hilbert-Raum, der
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Ringe aufweisen, die mit der
Quantenzahl 2 charakterisiert
werden.

die Quantenzustinde mathematisch beschreibt, ist somit
d-dimensional. Die vielfachen Vorteile solcher Quanten-
systeme sind zwar theoretisch bekannt, wurden aber oft-
mals erst unter Verwendung strukturierter Photonen im
Labor verifiziert. So leisten strukturierte Photonen immer
wieder Pionierarbeit in dem noch jungen Forschungszweig
der hochdimensionalen Quanteninformation [5].

Die rdumliche Struktur von Photonen kann sogar noch
komplexere Formen annehmen. Bisher wurde die trans-
versale Struktur einzelner Photonen unabhangig von ih-
rer Polarisation als skalare Amplitude diskutiert. Diese
Vereinfachung ist nur korrekt, wenn alle beteiligten Mo-
den die gleiche Polarisation besitzen. Nutzt man jedoch
explizit die Polarisation und damit die Vektornatur des
elektromagnetischen Feldes aus, ergeben sich komplexere
Lichtstrukturen. Beim Uberlagern zweier (oder mehrerer)
unterschiedlicher raumlicher Moden, die zudem eine un-
terschiedliche Polarisation aufweisen, ist die Polarisation
des Lichts raumlich abhingig. Ein solch komplex struk-
turiertes Photon kann sdmtliche Polarisationszustande in
Form eines komplexen transversalen Polarisationsmusters
gleichzeitig aufweisen (Abb. 5). Damit ist es moglich, die
Dimensionalitdt der Zustinde weiter auszudehnen.

26 Photonen 279 Photonen 674 Photonen 2729 Photonen

29 Photonen 232 Photonen 552 Photonen 2313 Photonen

Abb. 3 Einzelphotonen kénnen rdumliche Strukturen samt deren
Eigenschaften besitzen. Die unterschiedlichen Strukturen zeigen
sich durch das Aufsummieren vieler Detektionen von Einzelpho-
tonen in der gleichen Mode mittels einer empfindlichen Kamera.
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Photonen geschickt strukturieren

Die gewonnene Komplexitit der Struktur einzelner Pho-
tonen und deren Vorteile gehen aber auch mit neuen
Anforderungen an Erzeugungs-, Manipulations- und
Messmethoden einher. Das vermutlich wichtigste Expe-
rimentiergerat fiir strukturiertes Licht ist der raumliche
Lichtmodulator (Spatial Light Modulator, SLM). Dieser
erlaubt es mithilfe eines Computers, einen Lichtstrahl von
mehreren Millimetern Durchmesser mit einer Auflosung
von wenigen Mikrometern raumlich zu modulieren. Pha-
senmodulierende SLMs basierend auf Flissigkristallen sind
besonders effizient. Computerberechnete Hologramme
priagen den Photonen die gewiinschten Strukturen auf
und ermoglichen es, die transversale Phase des Photons
und indirekt auch deren Amplitude durch eine Modulation
der Brechungseffizienz des Hologramms beliebig einzustel-
len (Abb. 6a). Die oben erwihnten Modenstrukturen und
komplexe hochdimensionale Quantenzustande lassen sich
dadurch recht einfach auf einzelne Photonen aufprigen.
Eine dhnliche Herangehensweise, jedoch in umgekehrter
Richtung, kann helfen, den Zustand des Photons bezie-
hungsweise seine komplexe Struktur eindeutig auszulesen.
Hierfiir muss das Hologramm so programmiert sein, dass
es die entgegengesetzte Phasenstruktur der zu messenden
Mode aufprigt. Dies glattet ausschliefllich die Phasen-
front derjenigen Photonen, welche diese Struktur aufwei-
sen. Werden diese Photonen fokussiert, erhalten sie eine
Gauf$-dhnliche Struktur im Fokus und koppeln dadurch
effizient in Monomodenfasern ein. Hieraus resultiert somit
ein Modenfilter, der mittels der einfachen Berechnung der
jeweiligen Hologramme programmierbar ist und in Kom-
bination mit einem Einzelphotonendetektor als vielseitiger
Messapparat dienen kann.

Diese digitale Holografie ist wegen ihrer Flexibilitat die
vermutlich meistgenutzte Art, um strukturierte Photonen
zu erzeugen und zu messen. Wahrend der letzten Jahre

1) +-1)

wurden jedoch viele Strukturierungs- und Messmethoden
entwickelt und in Quantenexperimenten angewandt. Hier-
zu zahlen neue Techniken wie die Modulation von Licht
mithilfe der geometrischen Phase. Speziell strukturierte
Wellenplatten oder nanostrukturierte Oberflichen pragen
dem Photon abhéngig von seiner Polarisation eine raum-
liche Struktur auf. Die Umwandlung koppelt somit direkt
die Polarisation an eine raumliche Struktur (Abb. 5). Zu-
dem gibt es Aufbauten, die Photonen abhangig von ihrem
Bahndrehimpuls in unterschiedliche Richtungen lenken
und damit die Photonen strukturabhingig sortieren.

Die flexible unitire Modentransformation ist ebenso
wichtig im Umgang mit strukturiertem Quantenlicht und
wurde vor nicht allzu langer Zeit demonstriert [6]. Unitare
Transformationen sind einer der essenziellen Bausteine in
der Quanteninformation, denn sie erlauben es, das Quan-
tensystem zu manipulieren, ohne dessen Kohérenz zu zer-
storen oder Photonen zu verlieren. Sie entsprechen einer
Drehung des Quantenzustands in dessen Hilbert-Raum
und sind die grundlegenden Operationen eines jeden
Quantenalgorithmus. Ein populéres Beispiel hierfiir sind
Wellenplatten fiir den Polarisationsfreiheitsgrad, welche
die Polarisation zwischen verschiedenen Richtungen unitar
transformieren. Auf rdumliche Strukturen tibersetzt bedeu-
tet dies, dass eine unitére Transformation die Moden eines
gewissen Satzes eindeutig und ohne Verluste ineinander
oder deren Uberlagerungen iiberfiihrt.

Eine solche Manipulation der Modenstruktur ist nicht
mit einem einfachen Hologramm moglich. Vielmehr beno-
tigt es mehrere aufeinanderfolgende, sorgfaltig konstruierte
Phasenmodulationen, die iber kurze Ausbreitungsstiicke
durch den freien Raum verbunden sind (Abb. 6b). Bereits
wenige Phasenmodulationen reichen fiir eine begrenzte
Menge an Moden aus, um flexibel hochdimensionale
Quantengatter zu realisieren. Da mit der Anzahl an Mo-
den auch die Anzahl an benétigten Phasenmodulationen
steigt, ist es wichtig, die Moglichkeiten der Skalierbarkeit

Abb. 4 Einzelne Photonen kénnen sich in einer Uberlagerung mehrerer Moden befinden. Oben sind beispielhaft Aufnahmen der Uberla-
gerungsstrukturen von Einzelphotonen in Laguerre-Gau3-Moden sowie deren theoretische Phase und Intensitdt (Insets) gezeigt. Unten sind
berechnete Strukturen von drei- bzw. siebendimensionalen Uberlagerungen zu sehen. Die dreidimensionalen Strukturen setzen sich aus

den Moden |-1),

0) und |+1) zusammen, die siebendimensionalen aus den Moden

0,0),

-1,0), [+1,0),

0,1),

-1,1), [+1,1) und

0,2). Hierbei

entspricht der zweite Index der radialen Quantenzahl p und fiihrt somit zu einer komplexeren Struktur in radialer Richtung.
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Abb.5 Die Polarisationsmuster sind hier dargestellt durch Polarisationsellipsen (rot =rechtshandig, griin =linkshandig, blau =linear). Die
Muster entstehen beim Uberlagern zweier orthogonaler Moden mit jeweils unterschiedlicher Polarisation. Die Uberlagerung einer Mode mit
negativem Bahndrehimpuls und rechtszirkularer Polarisation |-1)|R) mit einer linkszirkular polarisierten Mode mit positivem Bahndrehim-
puls |+1)|L) ergibt beispielsweise ein radiales Polarisationsmuster (a). Verschiedene Polarisationsmuster lassen sich aus Einzelphotonenauf-
nahmen rekonstruieren (b). Die Insets zeigen die theoretisch zu erwartenden Strukturen.

in Form kompakter Aufbauten genauer zu erforschen. Ge-  Quanteninformation zu kodieren. Verschrinkte hoch-
nerell 6ffnet eine solche Technologie die Tiir, strukturierte dimensionale Photonen erlauben zudem neue fundamen-
Photonen in Quantensimulationen, -algorithmen und in tale Tests, um etwa die Frage nach einer lokal-realistischen
der Quantenkommunikation anzuwenden. Beschreibung der Quantenwelt ohne Statistik zu beantwor-
ten. Zusatzlich lassen sich die Grenzen ausloten, wie grof3
die Menge an Quanteninformation eines verschrankten
Zustands sein kann, die nichtlokal gespeichert wird. Neue
Wie bereits erwdhnt, ist eine schraubenartige Struktur mit ~ Wege der Erzeugung und Verifizierung maximaler Dimen-

Strukturierte Photonen in der Quantenforschung

dem Bahndrehimpuls eines einzelnen Photons verkniipft. ~ sionswerte der Verschrankung sind Gegenstand aktueller
Oftensichtlich stellt sich die Frage, wie grof3 dieser Bahn-  Forschung. Quantenzustinde von zwei Photonen, die in je-
drehimpuls pro Photon sein kann. Theoretisch ist er un-  weils 100 raumlichen Moden miteinander verschréankt sind,
begrenzt und sollte sogar makroskopische Werte anneh- ~ wurden bereits im Labor nachgewiesen. Der dazugehorige

men konnen. Der aktuelle Rekord liegt bei mehrals 10000 Hilbert-Raum besitzt eine Dimensionalitit von 100°, was
Bahndrehimpulsquanten, aufgeprigt auf ein einzelnes  ein riesiges Potenzial in der Quanteninformationsverar-
Photon [7]. Obwohl dieser Wert fiir ein Quantensystem  beitung und der Quantenkommunikation verspricht [5].

recht hoch ist, ist der damit verkniipfte Bahndrehimpuls Der Prozess, um diese komplexe Verschriankung zu er-
von makroskopischen Werten, mit denen sich makrosko-  zeugen, ist heutzutage immer noch derselbe wie beim ersten
pische Objekte wie kleine Kiigelchen bewegen lassen wiir- ~ Nachweis des photonischen Bahndrehimpulses, ndmlich die

den, noch weit entfernt. Die transversale Modenstruktur ~ spontane parametrische Fluoreszenz. In diesem nichtline-
wichst mit ansteigendem Bahndrehimpuls und skaliert ~ aren optischen Prozess wandelt sich ein hochenergetisches
im Idealfall mit Ve. Folglich sind makroskopische Wer-  Photon eines Laserstrahls in einem speziellen Kristall in
te aufgrund der notwendigerweise raumlich begrenzten  ein Paar niederenergetischer Einzelphotonen um. Da hier-
Optik wohl auch in Zukunft nur schwer zu erreichen. Das  bei neben der Energie auch Impuls und Bahndrehimpuls
Ergebnis zeigt jedoch eindrucksvoll, dass ein einzelnes  erhalten bleiben, entstehen Photonen mit verschriankten

Photon Strukturen mit fiinfstelliger Modenordnung an- ~ Bahndrehimpulsen. Dies funktioniert fiir simtliche andere
nehmen kann. Freiheitsgrade des Lichts. Daher gilt die spontane parame-
Unabhiéngig von diesen Schwierigkeiten ist damit ge-  trische Fluoreszenz als eines der wichtigsten Werkzeuge in

zeigt, dass sich eine grofSe Zahl an Moden dazu eignet, um der Quantenoptik [8].

-]
=
£
=
£
2
<
=
]

o
£
<
&
~
=
©
£
<
=
-y

Markus Hi

Abb. 6 Einrdaumlicher Lichtmodulator strukturiert Licht, indem ein computergeneriertes Hologramm die Amplitude und Phase des Lichts
in der ersten Brechungsordnung moduliert (a). Verschiedene Lichtmoden lassen sich theoretisch mithilfe mehrerer aufeinanderfolgender
Phasenmodulationen, die von kurzen Ausbreitungsstiicken im freien Raum unterbrochen sind, gleichzeitig verlustfrei und modenabhéngig
transformieren (b).
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Die Verschrankung des Bahndrehimpulses ist intuitiv zu
verstehen: Bei der Umwandlung des Laserphotons kann das
Photonenpaar je nach Einstellung in mehreren unterschied-
lichen Moden entstehen. Durch die Drehimpulserhaltung
muss jedoch die Summe der Drehimpulse des erzeugten
Photonenpaares gleich dem des Laserphotons sein. Besitzt
der Laser in der Gaufi-Mode keinen Bahndrehimpuls,
miissen die beiden Photonen jeweils einen entgegenge-
setzten Bahndrehimpuls aufweisen. Es entsteht somit der
(2d + 1)-dimensional verschrankte Zustand

|0) = (2d + 1) i |-0)|€),

wobei die beiden Zustandsvektoren |-£) und |€) die vielen
moglichen Bahndrehimpulse der beiden verschrinkten
Photonen beschreiben. Ahnliche Argumente helfen, die
Verschrankung von Modenstrukturen ohne Bahndreh-
impuls zu erkldren. Somit ist es moglich, die raumliche
Struktur, in welcher die Verschrinkung vorhanden ist,
an die jeweiligen Anforderungen anzupassen, die etwa
ein Ubertragungskanal in der Quantenkommunikation
vorgibt. Weitere Moglichkeiten, den Hilbert-Raum des
verschriankten Quantenzustands zu vergréf8ern, sind die
Erweiterung der Verschrankung auf mehr als zwei struktu-
rierte Photonen [5] sowie die oben erwiahnte Kombination
mit weiteren Freiheitsgraden.

Der vielleicht grofite Nutzen strukturierter Photonen in
Anwendungen der Quanteninformation liegt direkt in der
Natur der hochdimensionalen Quantenzustande. So ist bei-
spielsweise bekannt, dass sich mit ihnen mehr Information
pro Photon tibermitteln lasst und dass die Quantenzustén-
de widerstandsfahiger gegen das unvermeidbare Hinter-
grundrauschen sind. Intuitiv ist dies dadurch zu erkléren,
dass ein hochdimensionaler Freiheitsgrad es ermoglicht,
das Rauschen auf viele Messzustande zu verteilen und so-
mit das relative Signal-zu-Rausch-Verhiltnis zu verbessern.
Zudem erlauben hochdimensionale Zustinde aufgrund der
grofleren Anzahl an Messbasen eine detailliertere Vermes-
sung, welche die Quanteneigenschaft deutlicher vom Hin-
tergrund abhebt. Entsprechende Experimente, die neben
der rdumlichen Struktur auch die zeitliche Komponente
des Photons untersuchten, zeigten, dass Verschrinkung
sogar bei Tageslicht eindeutig nachweisbar und somit zur
Quantenkommunikation zu verwenden ist [9].

Dartiber hinaus gab es in den letzten Jahren in der Quan-
tenkommunikation grofe Fortschritte. Fiir eine effiziente
und storungsfreie Ubertragung wurden verschiedene Mog-
lichkeiten getestet und optimiert, um die bestmogliche
Ubertragung durch den freien Raum, unter Wasser sowie
in Lichtwellenleitern zu realisieren. Auch bei Quanten-
berechnungen kann die Hochdimensionalitét strukturierter
Photonen vorteilhaft sein. Es lassen sich etwa Vielteilchen-
Quantenoperationen wie ein cNOT-Gatter (controlled
NOT) auf lokale Einteilchenquantenoperationen verein-
fachen [6]. Dies ist gerade fiir photonische Systeme, bei
denen Vielteilchenquantengatter besonders schwierig zu
realisieren sind, ein grofier Vorteil.

Uberdies lassen sich durch geeignete Wahl der riaum-
lichen Strukturen Quantenzustinde erzeugen, die bei der
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Messgenauigkeit bis ans Quantenlimit heranreichen, deren
Genauigkeit also jenseits des klassischen Schrotrauschens
liegt. Diese Quantenmetrologie belegte, dass die raumliche
Struktur die verbesserte Messgrofie direkt beeinflusst. Pho-
tonen mit Bahndrehimpuls, also einer azimutalen Phase,
erlauben eine quantenlimitierte Messgenauigkeit fiir Win-
kelmessungen [10]. Photonen mit einer radialen Struktur
konnten hingegen dazu dienen, die optimale longitudinale
Position zu bestimmen [11].

Ausblick

Der enorme Aufschwung der Forschung an strukturiertem
Licht Gber die letzten 10 bis 20 Jahre treibt auch die Ent-
wicklung der Quantenoptik voran [5]. Dabei ist man nicht
auf photonische Systeme begrenzt, sondern hat die Ideen
und Erkenntnisse erfolgreich auf weitere Quantensysteme
wie Elektronen, Neutronen und Atome in Form von Mate-
riewellen ausgedehnt. Obwohl erste Quantentechnologien
basierend auf strukturierten Photonen bereits in Sicht sind,
gibt es noch offene Fragen. Gerade die Skalierung zu meh-
reren Moden und die Erzeugung einer gréfleren Anzahl an
verschrinkten Photonen benétigt noch weitere Forschung.
Aber auch neue Wege zur besseren Ubertragung, schnelleren
Modulation und effizienteren Messung sind gefragt, um das
noch recht junge Forschungsgebiet weiter als einen wichtigen

Bestandteil der zweiten Quantenrevolution zu etablieren.
*

Der Autor dankt Lea Kopf (Tampere Univ., Finnland) und Prof. Dr. Enno
Giese (TU Darmstadt) fir hilfreiche Anmerkungen und Kommentare.
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