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Licht, dessen Eigenschaften nur quantenoptisch zu be-
schreiben sind, ist als Quantenlicht bekannt. Seit vielen 
Jahrzehnten liefert es kontinuierlich neue Erkenntnisse 
in der Grundlagenforschung und initiiert die Entwick-
lung neuer Technologien und deren Anwendungen. 
Die technischen Fortschritte in der Modulierung von 
Licht zusammen mit neuen Erkenntnissen in der Quan-
teninformation eröffnen neue Möglichkeiten wie die 
Anwendung hochdimensionaler Quantenzustände oder 
das Zusammenspiel verschiedener Eigenschaften von 
Photonen. Das hat zu einem äußerst erfolgreichen Wis-
senschaftsgebiet geführt: der Erforschung und Anwen-
dung strukturierter Photonen.

W ie vieles in der modernen Physik geht die Idee von 
Photonen, also einzelnen Lichtquanten, auf Al-
bert Einstein zurück. In einer Arbeit aus dem Jahr 

1905 erklärte Einstein den photoelektrischen Effekt durch 
die Existenz von Photonen und gab somit der von Max 
Planck zuvor heuristisch eingeführten Konstante eine phy-
sikalische Bedeutung. In den späten 1920er-Jahren erhielt 
das Konzept der Photonen im Zuge der Quantisierung des 
elektromagnetischen Feldes eine formalere Basis. Photonen 
sind demnach die Feldquanten des elektromagnetischen 
Feldes. Ihre Eigenschaften sind durch die Freiheitsgrade 
des Lichts gegeben, also durch die Lichtmoden, die durch 
Photonen angeregt werden. Die Schwingungsfrequenz v der 
ebenen Lichtwelle entspricht der Energie des Lichtquants 
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Strukturierte Photonen
Photonen mit schraubenartiger Phasenstruktur besitzen einen Bahndrehimpuls und eröffnen 
in der Grundlagenforschung und für Quantentechnologien neue Möglichkeiten.
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Ein Lichtmodulator (im Hintergrund) prägt einem Laserstrahl eine 
räumliche Struktur auf, die sich mittels Langzeitbelichtung sicht-
bar machen lässt.
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(E = hv), der Wellenvektor k bezieht sich auf dessen Im-
puls [p = (h/2π)k = ħk], und die Polarisation beschreibt 
den Spindrehimpuls eines Photons (S = ±ħ). Besonders 
die Polarisation von Photonen stand in den vergangenen 
Jahrzehnten im Fokus: Zum einen untersuchte die Grund-
lagenforschung verblüffende Effekte wie die Überlagerung 
zweier Zustände, Quantenverschränkung oder Quanten-
teleportation. Zum anderen wurden bereits früh Anwen-
dungen dieser Quanteneffekte vorangetrieben, sodass Ge-
räte zur Quantenkommunikation oder Quantencomputer 
bereits verfügbar sind bzw. bald verfügbar sein werden. 
Der Siegeszug der Photonen und die Untersuchung ihrer 
grund legenden Quanteneigenschaften gipfelten in der Ver-
gabe des letztjährigen Physik-Nobelpreises an John Clau-
ser, Alain Aspect und Anton Zeilinger für ihre quanten-
optischen Experimente zur Verschränkung [1].

Interessanterweise wurde ein weiterer Freiheitsgrad des 
Lichts vor nicht allzu langer Zeit erstmals beschrieben: der 
Bahndrehimpuls. Les Allen, J. P. (Han) Woerdman und 
Kollegen brachten diesen 1992 mit der transversalen Pha-
senstruktur in Verbindung [2]. Diese Arbeit war die Initial-
zündung für das äußerst ergebnisreiche Forschungsgebiet 
des strukturierten Lichts. Die Wissenschaftler zeigten, 
dass Licht mit einer um die optische Achse ansteigenden 
Phase, d. h. einer schraubenartigen Phasenfront, einen 
zusätzlichen Drehimpuls besitzt. Im Gegensatz zum Spin-
drehimpuls, der eine Teilchendrehung um die eigene Ach-
se bewirkt, kann der neu entdeckte Drehimpuls zu einer 
Drehbewegung um die optische Achse führen. Er entspricht 
somit einem Bahndrehimpuls (Abb. 1). Dieser Bahndreh-
impuls des Lichts ist definiert als L = ±ħℓ, wobei ℓ die Win-
dungszahl ist, die dem Vielfachen eines azimutalen Phasen-
anstiegs um 2π entspricht. Die nähere Betrachtung zeigt, 
dass solche „Lichtschrauben“ entlang der optischen Achse 

alle möglichen Phasenwerte zugleich annehmen müssten. 
Da dies unmöglich ist, weist ein solcher Lichtstrahl an die-
sem Punkt keine Intensität auf. Mathematisch entspricht 
dies einer Phasensingularität entlang der optischen Achse. 
Eine Kameraaufnahme des Lichts gleicht daher einem Do-
nut, d. h. einem hellen Ring mit dunklem Zentrum.

Der experimentelle Nachweis dieses Drehimpulses ge-
lang der Gruppe um Halina Rubinsztein-Dunlop im Jahr 
1995 mittels optischer Pinzetten [3]. Diese frühen Arbeiten 
zeigten, dass die transversale räumliche Struktur von Licht 
nicht nur komplexe Formen annimmt, sondern auch zu 
interessanten Eigenschaften wie einem Bahndrehimpuls 
führt. Der Startschuss in der Quantenoptik folgte 2001 mit 
dem ersten experimentellen Beleg einer schrauben artigen 
Phasenstruktur einzelner Photonen [4]. Die Gruppe um 
Anton Zeilinger wies zudem nach, dass zwei Photonen 
in ihrem Bahndrehimpuls verschränkt sein können. Die 
Windungszahl ℓ gilt somit als Quantenzahl. Basierend auf 
diesen Resultaten entwickelte sich ein äußerst lebendiges 
Forschungsgebiet innerhalb der Quantenoptik, das nicht 
nur neue Erkenntnisse in der Grundlagenforschung lie-
fert, sondern auch für zukünftige Quantentechnologien 
entscheidend ist. Bevor wir einige aktuelle Forschungsfra-
gen und ihre Anwendungen beleuchten, gilt es zu klären, 
wie man strukturierte Photonen im Labor erzeugt und 
untersucht. 

Was sind strukturierte Photonen?
Die Eigenschaften von Photonen sind direkt mit den 
Freiheitsgraden des Lichts verknüpft. Die einfachste Art, 
Lichtstrahlen zu beschreiben, sind ebene Wellen. Doch 
eine einzelne Elementarwelle ist unphysikalisch, da diese 
notwendigerweise unendlich ausgedehnt ist. Ein realis-
tischer Lichtstrahl, etwa der eines Lasers, muss immer in 
der Ebene senkrecht zur Ausbreitungsrichtung begrenzt 
sein. Eine solche räumliche Begrenzung ist bei Laserstrah-
len gewöhnlich ein rundes Profil in Form einer Gaußschen 
Intensitätsverteilung. Bei nicht allzu starker Fokussierung 
lässt sich ein solcher Strahl durch die paraxiale Wellenglei-
chung beschreiben, d. h. eine transversale Welle, bei der die 
Amplitude in transversaler Richtung moduliert ist. Diese 
Amplitudenstruktur ist als räumliche Mode des Lichts be-
kannt. Die paraxiale Wellengleichung erlaubt als Lösung 
neben der fundamentalen Gauß-Mode auch beliebig viele 
Moden höherer Ordnung mit komplexeren Strukturen. 
Diese breiten sich, ebenso wie eine Gauß-Mode von der 
natür lichen Divergenz abgesehen, unverändert im Raum 
aus. Sie sind stabil und heißen daher ausbreitungs invariant. 
Zudem ergeben sich verschiedene Modenfamilien, die je-
weils eine vollständige Menge an orthogonalen Moden 
bilden, also eine Basis darstellen, um sämtliche Lichtfelder 
zu beschreiben. Obwohl es keine ausgezeichneten Mo-
denfamilien gibt, sind Laguerre-Gauß-Moden besonders 
populär. Sie ergeben sich als Lösung der paraxialen Wel-
lengleichung in Zylinderkoordinaten und verdanken ihren 
Namen den herangezogenen Polynomen. Sie besitzen eine 
schraubenartige Phasenstruktur und somit einen Bahn-
drehimpuls (Abb. 2). 
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Abb. 1 Photonen mit schraubenartiger Phase besitzen Donut-förmige Inten-
sitätsstrukturen. Die Phasenstruktur kann unterschiedlich stark ansteigen und 
rechts- bzw. linksdrehend sein: Sie ist mit einem positiven bzw. negativen quanti-
sierten Bahndrehimpuls |±ℓ⟩ verbunden. Im linken Bild deutet dies der graue Pfeil 
an. Die runden Insets zeigen eine häufig verwendete zweidimensionale Darstel-
lung des Phasen- und Intensitätsverlaufs in einem Querschnitt des Lichts.
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Was bedeuten diese räumlichen Strukturen bzw. Moden 
für einzelne Photonen? Zunächst entspricht die Intensitäts-
verteilung der Wahrscheinlichkeit, mit der ein Photon an 
einer bestimmten Stelle zu finden ist. Eine Kamera, die 
einzelne Lichtteilchen detektieren kann, registriert somit 
ein Photon, das sich in dieser Mode befindet, zufällig auf 
einem ihrer Pixel. Die Intensitätsverteilung der Moden-
struktur entspricht hier der Detektionswahrscheinlichkeit. 
Durch Aufsummieren vieler Detektionen einzelner Pho-
tonen in der gleichen Mode offenbart sich ihre Struktur 
(Abb. 3). Die Einzelphotonen-Aufnahmen zeigen somit 
den Teilchencharakter des Photons in Form eines einzel-
nen Pixels. Zugleich tritt der Wellencharakter des Photons 
an der transversalen Struktur der Mode als Lösung einer 
Wellengleichung hervor.

Quantenzustände in hohen Dimensionen
Zusätzlich zum fundamentalen Welle-Teilchen-Dualismus 
der Photonen ist es für Quantenexperimente besonders 
wichtig, dass sich einzelne Photonen nicht nur in einer 
einzelnen Mode befinden können, sondern auch in einer 
kohärenten Überlagerung verschiedener Moden. Ähnlich 
der Überlagerung zweier Pfade in einem Doppelspalt-
experiment und dem daraus resultierenden Interferenz-
muster ergibt sich bei der Detektion strukturierter Pho-
tonen durch die Überlagerung zweier oder mehrerer 
Moden eine neue, oftmals komplexere Modenstruktur 
(Abb. 4). Die Komplexität der Strukturen eines einzelnen 
Photons verdeutlicht eindrucksvoll, welches Potenzial in 
strukturierten Photonen schlummert: In der Quanten-
informationsverarbeitung können orthogonale Moden 
als Quanteninformationsträger dienen. Aufgrund der 
unbegrenzten Anzahl an räumlichen Moden sind sie ein 
hervorragender Kandidat, um hochdimensionale Quan-
tenzustände physikalisch zu realisieren. Im Gegensatz 
zu den bekannten Qubits, also den zweidimensionalen 
Quantenzuständen |0⟩ und |1⟩, haben hochdimensionale 
Quantenzustände (Qudits) d mögliche Zustände: |0⟩, |1⟩, 
|2⟩, …, |d⟩. Der zugrunde liegende Hilbert-Raum, der 

die Quantenzustände mathematisch beschreibt, ist somit 
d-dimensional. Die vielfachen Vorteile solcher Quanten-
systeme sind zwar theo retisch bekannt, wurden aber oft-
mals erst unter Verwendung strukturierter Photonen im 
Labor verifiziert. So leisten strukturierte Photonen immer 
wieder Pionierarbeit in dem noch jungen Forschungszweig 
der hochdimensionalen Quanteninformation [5]. 

Die räumliche Struktur von Photonen kann sogar noch 
komplexere Formen annehmen. Bisher wurde die trans-
versale Struktur einzelner Photonen unabhängig von ih-
rer Polarisation als skalare Amplitude diskutiert. Diese 
Vereinfachung ist nur korrekt, wenn alle beteiligten Mo-
den die gleiche Polarisation besitzen. Nutzt man jedoch 
explizit die Polarisation und damit die Vektornatur des 
elektromagnetischen Feldes aus, ergeben sich komplexere 
Lichtstrukturen. Beim Überlagern zweier (oder mehrerer) 
unterschiedlicher räumlicher Moden, die zudem eine un-
terschiedliche Polarisation aufweisen, ist die Pola risation 
des Lichts räumlich abhängig. Ein solch komplex struk-
turiertes Photon kann sämtliche Polarisationszustände in 
Form eines komplexen transversalen Polarisations musters 
gleichzeitig aufweisen (Abb. 5). Damit ist es möglich, die 
Dimensionalität der Zustände weiter auszudehnen. 
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Abb. 2 Lichtmoden des 
Zylinderkoordinatensystems 
heißen Laguerre-Gauß-Moden 
und können eine schrauben-
artige Phasenstruktur besitzen, 
die durch die Quantenzahl ℓ
gekennzeichnet ist. Höhere 
Ordnungen können zusätzliche 
Ringe aufweisen, die mit der 
Quantenzahl � charakterisiert 
werden. 

Abb. 3 Einzelphotonen können räumliche Strukturen samt deren 
Eigenschaften besitzen. Die unterschiedlichen Strukturen zeigen 
sich durch das Aufsummieren vieler Detektionen von Einzelpho-
tonen in der gleichen Mode mittels einer empfindlichen Kamera.
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Photonen geschickt strukturieren 

Die gewonnene Komplexität der Struktur einzelner Pho-
tonen und deren Vorteile gehen aber auch mit neuen 
Anforderungen an Erzeugungs-, Manipulations- und 
Messmethoden einher. Das vermutlich wichtigste Expe-
rimentiergerät für strukturiertes Licht ist der räumliche 
Lichtmodulator (Spatial Light Modulator, SLM). Dieser 
erlaubt es mithilfe eines Computers, einen Lichtstrahl von 
mehreren Millimetern Durchmesser mit einer Auflösung 
von wenigen Mikrometern räumlich zu modulieren. Pha-
senmodulierende SLMs basierend auf Flüssigkristallen sind 
besonders effizient. Computerberechnete Hologramme 
prägen den Photonen die gewünschten Strukturen auf 
und ermöglichen es, die transversale Phase des Photons 
und indirekt auch deren Amplitude durch eine Modulation 
der Brechungseffizienz des Hologramms beliebig einzustel-
len (Abb. 6a). Die oben erwähnten Modenstrukturen und 
komplexe hochdimensionale Quantenzustände lassen sich 
dadurch recht einfach auf einzelne Photonen aufprägen. 
Eine ähnliche Herangehensweise, jedoch in umgekehrter 
Richtung, kann helfen, den Zustand des Photons bezie-
hungsweise seine komplexe Struktur eindeutig auszulesen. 
Hierfür muss das Hologramm so programmiert sein, dass 
es die entgegengesetzte Phasenstruktur der zu messenden 
Mode aufprägt. Dies glättet ausschließlich die Phasen-
front derjenigen Photonen, welche diese Struktur aufwei-
sen. Werden diese Photonen fokussiert, erhalten sie eine 
Gauß-ähnliche Struktur im Fokus und koppeln dadurch 
effizient in Monomodenfasern ein. Hieraus resultiert somit 
ein Modenfilter, der mittels der einfachen Berechnung der 
jeweiligen Hologramme programmierbar ist und in Kom-
bination mit einem Einzelphotonendetektor als vielseitiger 
Messapparat dienen kann. 

Diese digitale Holografie ist wegen ihrer Flexibilität die 
vermutlich meistgenutzte Art, um strukturierte Photonen 
zu erzeugen und zu messen. Während der letzten Jahre 

wurden jedoch viele Strukturierungs- und Messmethoden 
entwickelt und in Quantenexperimenten angewandt. Hier-
zu zählen neue Techniken wie die Modulation von Licht 
mithilfe der geometrischen Phase. Speziell strukturierte 
Wellenplatten oder nanostrukturierte Oberflächen prägen 
dem Photon abhängig von seiner Polarisation eine räum-
liche Struktur auf. Die Umwandlung koppelt somit direkt 
die Polarisation an eine räumliche Struktur (Abb. 5). Zu-
dem gibt es Aufbauten, die Photonen abhängig von ihrem 
Bahndrehimpuls in unterschiedliche Richtungen lenken 
und damit die Photonen strukturabhängig sortieren. 

Die flexible unitäre Modentransformation ist ebenso 
wichtig im Umgang mit strukturiertem Quantenlicht und 
wurde vor nicht allzu langer Zeit demonstriert [6]. Unitäre 
Transformationen sind einer der essenziellen Bausteine in 
der Quanteninformation, denn sie erlauben es, das Quan-
tensystem zu manipulieren, ohne dessen Kohärenz zu zer-
stören oder Photonen zu verlieren. Sie entsprechen einer 
Drehung des Quantenzustands in dessen Hilbert-Raum 
und sind die grundlegenden Operationen eines jeden 
Quantenalgorithmus. Ein populäres Beispiel hierfür sind 
Wellenplatten für den Polarisationsfreiheitsgrad, welche 
die Polarisation zwischen verschiedenen Richtungen unitär 
transformieren. Auf räumliche Strukturen übersetzt bedeu-
tet dies, dass eine unitäre Transformation die Moden eines 
gewissen Satzes eindeutig und ohne Verluste ineinander 
oder deren Überlagerungen überführt. 

Eine solche Manipulation der Modenstruktur ist nicht 
mit einem einfachen Hologramm möglich. Vielmehr benö-
tigt es mehrere aufeinanderfolgende, sorgfältig konstruierte 
Phasenmodulationen, die über kurze Ausbreitungsstücke 
durch den freien Raum verbunden sind (Abb. 6b). Bereits 
wenige Phasenmodulationen reichen für eine begrenzte 
Menge an Moden aus, um flexibel hochdimensionale 
Quantengatter zu realisieren. Da mit der Anzahl an Mo-
den auch die Anzahl an benötigten Phasenmodulationen 
steigt, ist es wichtig, die Möglichkeiten der Skalierbarkeit 

Abb. 4  Einzelne Photonen können sich in einer Überlagerung mehrerer Moden befinden. Oben sind beispielhaft Aufnahmen der Überla-
gerungsstrukturen von Einzelphotonen in Laguerre-Gauß-Moden sowie deren theoretische Phase und Intensität (Insets) gezeigt. Unten sind 
berechnete Strukturen von drei- bzw. siebendimensionalen Überlagerungen zu sehen. Die dreidimensionalen Strukturen setzen sich aus 
den Moden |–1⟩, |0⟩ und |+1⟩ zusammen, die siebendimensionalen aus den Moden |0,0⟩, |–1,0⟩, |+1,0⟩, |0,1⟩, |–1,1⟩, |+1,1⟩ und |0,2⟩. Hierbei 
entspricht der zweite Index der radialen Quantenzahl p und führt somit zu einer komplexeren Struktur in radialer Richtung.
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in Form kompakter Aufbauten genauer zu erforschen. Ge-
nerell öffnet eine solche Technologie die Tür, strukturierte 
Photonen in Quantensimulationen, -algorithmen und in 
der Quantenkommunikation anzuwenden. 

Strukturierte Photonen in der Quantenforschung 
Wie bereits erwähnt, ist eine schraubenartige Struktur mit 
dem Bahndrehimpuls eines einzelnen Photons verknüpft. 
Offensichtlich stellt sich die Frage, wie groß dieser Bahn-
drehimpuls pro Photon sein kann. Theoretisch ist er un-
begrenzt und sollte sogar makroskopische Werte anneh-
men können. Der aktuelle Rekord liegt bei mehr als 10 000 
Bahndrehimpulsquanten, aufgeprägt auf ein einzelnes 
Photon [7]. Obwohl dieser Wert für ein Quanten system 
recht hoch ist, ist der damit verknüpfte Bahndrehimpuls 
von makroskopischen Werten, mit denen sich makrosko-
pische Objekte wie kleine Kügelchen bewegen lassen wür-
den, noch weit entfernt. Die transversale Modenstruktur 
wächst mit ansteigendem Bahndrehimpuls und skaliert 
im Idealfall mit √–ℓ. Folglich sind makroskopische Wer-
te aufgrund der notwendigerweise räumlich begrenzten 
Optik wohl auch in Zukunft nur schwer zu erreichen. Das 
Ergebnis zeigt jedoch eindrucksvoll, dass ein einzelnes 
Photon Strukturen mit fünfstelliger Modenordnung an-
nehmen kann. 

Unabhängig von diesen Schwierigkeiten ist damit ge-
zeigt, dass sich eine große Zahl an Moden dazu eignet, um 

Quanteninformation zu kodieren. Verschränkte hoch-
dimensionale Photonen erlauben zudem neue fundamen-
tale Tests, um etwa die Frage nach einer lokal-realistischen 
Beschreibung der Quantenwelt ohne Statistik zu beantwor-
ten. Zusätzlich lassen sich die Grenzen ausloten, wie groß 
die Menge an Quanteninformation eines verschränkten 
Zustands sein kann, die nichtlokal gespeichert wird. Neue 
Wege der Erzeugung und Verifizierung maximaler Dimen-
sionswerte der Verschränkung sind Gegenstand aktueller 
Forschung. Quantenzustände von zwei Photonen, die in je-
weils 100 räumlichen Moden miteinander verschränkt sind, 
wurden bereits im Labor nachgewiesen. Der dazugehörige 
Hilbert-Raum besitzt eine Dimensionalität von 1002, was 
ein riesiges Potenzial in der Quanteninformationsverar-
beitung und der Quantenkommunikation verspricht [5]. 

Der Prozess, um diese komplexe Verschränkung zu er-
zeugen, ist heutzutage immer noch derselbe wie beim ersten 
Nachweis des photonischen Bahndrehimpulses, nämlich die 
spontane parametrische Fluoreszenz. In diesem nichtline-
aren optischen Prozess wandelt sich ein hochenergetisches 
Photon eines Laserstrahls in einem speziellen Kris tall in 
ein Paar niederenergetischer Einzelphotonen um. Da hier-
bei neben der Energie auch Impuls und Bahndrehimpuls 
erhalten bleiben, entstehen Photonen mit verschränkten 
Bahndrehimpulsen. Dies funktioniert für sämtliche andere 
Freiheitsgrade des Lichts. Daher gilt die spontane parame-
trische Fluoreszenz als eines der wichtigsten Werkzeuge in 
der Quantenoptik [8]. 

Abb. 5 Die Polarisationsmuster sind hier dargestellt durch Polarisationsellipsen (rot = rechtshändig, grün = linkshändig, blau = linear). Die 
Muster entstehen beim Überlagern zweier orthogonaler Moden mit jeweils unterschiedlicher Polarisation. Die Überlagerung einer Mode mit 
negativem Bahndrehimpuls und rechtszirkularer Polarisation |–1⟩|R⟩ mit einer linkszirkular polarisierten Mode mit positivem Bahndrehim-
puls |+1⟩|L⟩ ergibt beispielsweise ein radiales Polarisationsmuster (a). Verschiedene Polarisationsmuster lassen sich aus Einzelphotonenauf-
nahmen rekonstruieren (b). Die Insets zeigen die theoretisch zu erwartenden Strukturen. 
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a                                                                                                                        b

Abb. 6 Ein räumlicher Lichtmodulator strukturiert Licht, indem ein computergeneriertes Hologramm die Amplitude und Phase des Lichts 
in der ersten Brechungsordnung moduliert (a). Verschiedene Lichtmoden lassen sich theoretisch mithilfe mehrerer aufeinanderfolgender 
Phasenmodulationen, die von kurzen Ausbreitungsstücken im freien Raum unterbrochen sind, gleichzeitig verlustfrei und modenabhängig 
transformieren (b). 
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Die Verschränkung des Bahndrehimpulses ist intuitiv zu 
verstehen: Bei der Umwandlung des Laserphotons kann das 
Photonenpaar je nach Einstellung in mehreren unterschied-
lichen Moden entstehen. Durch die Drehimpulserhaltung 
muss jedoch die Summe der Drehimpulse des erzeugten 
Photonenpaares gleich dem des Laserphotons sein. Besitzt 
der Laser in der Gauß-Mode keinen Bahndrehimpuls, 
müssen die beiden Photonen jeweils einen entgegenge-
setzten Bahndrehimpuls aufweisen. Es entsteht somit der 
(2d + 1)-dimensional verschränkte Zustand 

|Φ⟩ = (2d + 1)–1/2 Σd
ℓ=–d |–ℓ⟩|ℓ⟩,

wobei die beiden Zustandsvektoren |–ℓ⟩ und |ℓ⟩ die vielen 
möglichen Bahndrehimpulse der beiden verschränkten 
Photonen beschreiben. Ähnliche Argumente helfen, die 
Verschränkung von Modenstrukturen ohne Bahndreh-
impuls zu erklären. Somit ist es möglich, die räumliche 
Struktur, in welcher die Verschränkung vorhanden ist, 
an die jeweiligen Anforderungen anzupassen, die etwa 
ein Übertragungskanal in der Quantenkommunikation 
vorgibt. Weitere Möglichkeiten, den Hilbert-Raum des 
verschränkten Quantenzustands zu vergrößern, sind die 
Erweiterung der Verschränkung auf mehr als zwei struktu-
rierte Photonen [5] sowie die oben erwähnte Kombination 
mit weiteren Freiheitsgraden.

Der vielleicht größte Nutzen strukturierter Photonen in 
Anwendungen der Quanteninformation liegt direkt in der 
Natur der hochdimensionalen Quantenzustände. So ist bei-
spielsweise bekannt, dass sich mit ihnen mehr Information 
pro Photon übermitteln lässt und dass die Quantenzustän-
de widerstandsfähiger gegen das unvermeidbare Hinter-
grundrauschen sind. Intuitiv ist dies dadurch zu erklären, 
dass ein hochdimensionaler Freiheitsgrad es ermöglicht, 
das Rauschen auf viele Messzustände zu verteilen und so-
mit das relative Signal-zu-Rausch-Verhältnis zu verbessern. 
Zudem erlauben hochdimensionale Zustände aufgrund der 
größeren Anzahl an Messbasen eine detailliertere Vermes-
sung, welche die Quanteneigenschaft deutlicher vom Hin-
tergrund abhebt. Entsprechende Experimente, die neben 
der räumlichen Struktur auch die zeitliche Komponente 
des Photons untersuchten, zeigten, dass Verschränkung 
sogar bei Tageslicht eindeutig nachweisbar und somit zur 
Quantenkommunikation zu verwenden ist [9]. 

Darüber hinaus gab es in den letzten Jahren in der Quan-
tenkommunikation große Fortschritte. Für eine effiziente 
und störungsfreie Übertragung wurden verschiedene Mög-
lichkeiten getestet und optimiert, um die bestmögliche 
Übertragung durch den freien Raum, unter Wasser sowie 
in Lichtwellenleitern zu realisieren. Auch bei Quanten
berechnungen kann die Hochdimensionalität strukturierter 
Photonen vorteilhaft sein. Es lassen sich etwa Vielteilchen-
Quantenoperationen wie ein cNOT-Gatter (controlled 
NOT) auf lokale Einteilchenquantenoperationen verein-
fachen [6]. Dies ist gerade für photonische Systeme, bei 
denen Vielteilchenquantengatter besonders schwierig zu 
realisieren sind, ein großer Vorteil. 

Überdies lassen sich durch geeignete Wahl der räum-
lichen Strukturen Quantenzustände erzeugen, die bei der 

Messgenauigkeit bis ans Quantenlimit heranreichen, deren 
Genauigkeit also jenseits des klassischen Schrotrauschens 
liegt. Diese Quantenmetrologie belegte, dass die räumliche 
Struktur die verbesserte Messgröße direkt beeinflusst. Pho-
tonen mit Bahndrehimpuls, also einer azimutalen Phase, 
erlauben eine quantenlimitierte Messgenauigkeit für Win-
kelmessungen [10]. Photonen mit einer radialen Struktur 
könnten hingegen dazu dienen, die optimale longitudinale 
Position zu bestimmen [11].  

Ausblick
Der enorme Aufschwung der Forschung an strukturiertem 
Licht über die letzten 10 bis 20 Jahre treibt auch die Ent-
wicklung der Quantenoptik voran [5]. Dabei ist man nicht 
auf photonische Systeme begrenzt, sondern hat die Ideen 
und Erkenntnisse erfolgreich auf weitere Quantensysteme 
wie Elektronen, Neutronen und Atome in Form von Mate-
riewellen ausgedehnt. Obwohl erste Quantentechnologien 
basierend auf strukturierten Photonen bereits in Sicht sind, 
gibt es noch offene Fragen. Gerade die Skalierung zu meh-
reren Moden und die Erzeugung einer größeren Anzahl an 
verschränkten Photonen benötigt noch weitere Forschung. 
Aber auch neue Wege zur besseren Übertragung, schnelleren 
Modulation und effizienteren Messung sind gefragt, um das 
noch recht junge Forschungsgebiet weiter als einen wichtigen 
Bestandteil der zweiten Quantenrevolution zu etablieren.
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