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Training large language models 
(LLMs) is critical for advancing AI, 
but scaling these models requires 
efficient and reliable infrastruc-
ture to mitigate failures. This ar-
ticle explores fault tolerance stra-
tegies employed by Google, Meta, 
and Alibaba, focusing on their 
approaches to managing failures 
during LLM training. It compares 
techniques such as check-poin-
ting, redundancy, and network 
reconfiguration through Optical 
Circuit Switches, highlighting their 
impact on training efficiency.

We support the idea that Optical 
Circuit Switching (OCS), par-

ticularly with microsecond-range 
reconfiguration, emerges as a key 
solution, enabling rapid topology ad-
justments to bypass failures minimi-
zing costly checkpoint recovery. This 
approach reduces downtime, supports 
dynamic workloads, and enhances 
scalability for hyperscale AI clusters.

Language model vs. cloud
General cloud computing differs 
significantly from LLM training in 
terms of traffic patterns and fault 
tolerance:

	� Cloud computing generates mil-
lions of flows, resulting in high net-
work entropy. These flows are conti-
nuous and typically utilize less than 
20 % of NIC capacity.
	� LLM training, on the other hand, 

produces few but periodically burs-
ty flows, leading to low entropy and 
high utilization – sometimes rea-
ching full NIC capacity.
	� Additionally, LLM training is 

a synchronous process, where all 
GPUs collaborate to complete a se-
ries of distributed tasks. A failure in 
any task can delay or crash the en-
tire training process, making LLM 
training more sensitive to faults 
than traditional cloud computing.

Current data centers running 
LLMs rely on Electrical Packet Swit-
ches (EPSs) with static wired topo-
logies. These are designed to handle 
arbitrary communication patterns 
but are oblivious to actual traffic 
and optimized only for worst-case 
scenarios. They lack failure recove-
ry strategies, such as the ability to 
rewire around faults. 

Reliability challenges
Reliability is a fundamental chal-
lenge in operating large-scale ma-

chine learning (ML) infrastructures 
due to:
	� Increased likelihood of hard-

ware failure at scale, with training 
clusters continuously growing.
	� Gang scheduling semantics, 

where all tasks of a parallel ML 
job (e.g., training across multiple 
GPUs) must run simultaneously or 
not at all.

When a failure occurs, LLM 
training relies on checkpoints to 
recover. However, this requires sto-
rage and incurs high overhead, of-
ten rolling back training by several 
hours – leading to financial loss and 
reduced productive runtime.
	� Another challenge is identifying 

defective nodes in highly inter-
connected systems, where a single 
failure can cascade and obscure the 
root cause.

Meta [1] details how workloads 
are managed on their large-scale 
ML research clusters (RSC-1 with 
16,000  GPUs and RSC-2 with 
8,000  GPUs). Users submit jobs 
composed of many tasks, each run-
ing on the GPUs of a node. The 
scheduler attempts to co-locate 
tasks based on the physical network 
topology. A single task failure can 
trigger a complete job reallocation.

This motivates fault tolerance 
strategies such as checkpointing and 
redundancy for gang scheduling. 
While checkpointing allows recove-
ry from a saved state, it introduces 
unproductive scheduled time due to 
restart and overhead.

Meta also notes potential im-
provements in the network fabric, 
suggesting that resilience could be 
enhanced by enabling topology re-
configuration to route around fai-
lures. Additionally, failure identifi-
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cation requires real-time telemetry, 
prompting a redesign of the network. 

Alibaba HPN [2] introduces a 
two-tier, dual-plane architecture 
with dual Top-of-Rack (ToR) swit-
ches to improve fault tolerance. 
While this design mitigates ToR 
failures and hash polarization, it 
has drawbacks: It only addresses 
ToR failures. Each host requires 
nine NICs connected to dual ToRs, 
increasing deployment complexity 
and testing overhead. Scalability 
becomes challenging for hyperscale 
clusters.

Now, let’s use photonics!
In a previous work, Meta describes 
TopoOpt [3], a direct-connect fabric 
for deep neural network training. 
This strategy optimizes distributed 
training across computation, com-
munication, and network topology.

TopoOpt uses reconfigurable 
telescent patch panel optical swit-
ches to create dedicated partitions 
for each training job. ToR switches 
connect to the optical layer, for-
ming a direct-connect topology. 
The robotic patch panel physically 
reconfigures fibers, achieving up to 
3.4× faster DNN training at lower 
cost. When a fiber fails, TopoOpt 
can temporarily use a link dedica-
ted to Model Partitioning traffic to 
recover an AllReduce ring. In the 

case of permanent failures, Topo-
Opt reconfigures the topology by 
swapping ports to restore the failed 
connection.

However, reconfiguration takes 
seconds to minutes, limiting real-
time adaptability. TopoOpt assumes 
static traffic patterns between itera-
tions, which is unsuitable for mo-
dels with dynamic communication 
needs (e.g., GNNs, MoE). A single 
link failure in an AllReduce ring 
disrupts sequential communica-
tion, and the slow reconfigurati-
on cannot quickly restore optimal 
topology.

Let’s use faster photonics
Google introduced its MEMS-based 
Optical Circuit Switch (OCS) [4], 
offering millisecond-range reconfi-
guration for large-scale AI clusters. 
Unlike Meta’s TopoOpt, which re-
lies on slow robotic patch panels, 
Google’s OCS dynamically recon-
figures topologies to route around 
link failures.

Built on Palomar MEMS swit-
ches, OCS achieves up to 3× bet-
ter system availability compared 
to static fabrics. It maintains high 
bandwidth for bursty, high-utiliza-
tion traffic in GPU/TPU superpods 
and eliminates hash polarization 
through optical transparency.

By supporting dynamic work

loads like GNNs and MoE models, 
OCS reduces reliance on costly 
checkpointing and minimizes un-
productive scheduled time.

Let’s use even faster photonics
The most common training pat-
terns involve periodic topology 
changes. However, as the number of 
model parameters surges, more effi-
cient fine-grained solutions – such 
as model parallelism and data par-
allelism – must be considered for 
LLM training, and these approaches 
introduce dynamic topologies.

In early work, KDDI [5] deve-
loped a nanosecond switching ar-
chitecture based on a 2 × 2 electri-
cally controllable Faraday rotator. 
The authors argue that fast optical 
switching, with at least micro
second-level reconfiguration time, 
is necessary to support the rapidly 
varying topologies involved in dis-
tributed training jobs. While MEMS 
optical switches enable topological 
flexibility, they cannot reach the re-
quired speed.

Silicon Photonics (SiPh) offers 
several advantages for developing 
fast, reconfigurable Optical Circuit 
Switches (OCS) for distributed LLM 
training. These advantages stem 
from solid-state integration, com-
pact design, and flexible processing 
capabilities. Key benefits include:
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	� Gain control by aggregating 
Optical Semiconductor Amplifiers 
(OSAs), which are currently dis
aggregated components but may 
be integrated on-chip in the future.
	� Fast reconfiguration of connec-

tions in the microsecond range 
using thermo-optical phase shifters, 
and scalability to nanosecond range 
using electro-optical phase shifters.
	� Real-time telemetry via on-chip 

Si/Ge photodetectors that monitor 
signal amplitude and can localize 
failures.
	� Increased cost efficiency, which 

scales dramatically with volume due 
to shared manufacturing processes 
with microelectronics.
	� Enhanced reliability, for the 

same reasons as above.
At iPronics, we have developed 

and launched the first SiPh OCS 
(Fig. 1) with a reconfiguration time 
of less than 100 µs. It provides per-
channel gain control by incorpora-
ting disaggregated OSAs. iPronics’ 
technology is based on high-per-
formance, programmable Photonic 
Integrated Circuit (PIC) building 
blocks designed in-house.

Our development efforts have 
focused on:

	� Improving performance such 
as reducing losses in PIC building 
blocks to enable low-impact OSA 
design.
	� Increasing circuit density, 

enabling the creation of strictly 
non-blocking, high-radix OCS.
	� The developed OCS is software-

controlled, ready for deployment in 
AI cluster control planes, and sup-
ports additional functions such as 
multicast capabilities.

Conclusions
This article highlights a growing 
trend toward the adoption of Op-
tical Circuit Switches (OCS) by 
large-scale clusters for training 
heavy models like LLMs using 
distributed patterns. This shift is 
driven by the high cost of current 
reliability-enhancing mitigations, 
posing a significant challenge for 
cloud service providers.

As Meta notes, “over 90 % of jobs 
use less than one server but account 
for less than 10 % of GPU time” [1], 
while Alibaba reports that “a fault 
in LLM training can cost 20× more 
than in general cloud computing” 
[2]. Cloud providers are actively 

seeking solutions to improve effi-
ciency for large models. OCS – es-
pecially those based on solid-state 
technology with microsecond re-
configuration times – emerge as 
promising solutions to meet these 
demands.
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Fig. 1  iPronics Optical Networking Engine: 32 radix fast reconfiguration OCS, with incorporated gain control and telemetry, 
design for AI cluster applications. The picture highlights the SiPh chip, the OSA and driving unit. Inset: detail of the photonic unit 
cell, a 2 × 2 MMI controlled by a thermo-optical phase shifter. 
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