19.02.2013

Durchblick im großen Stil

Saarbrücker Forscher wollen zerstörungsfreie Prüfung von großflächigen Objekten vereinfachen.

Winzige Fehler auf Flugzeugtragflächen oder Computerplatinen können dramatische Folgen haben. Um diese aufzuspüren, benötigt man Prüfverfahren, bei denen das Objekt selbst keinen Schaden nimmt. Die Computertomographie konnte bisher dafür nicht eingesetzt werden. Denn bei der Untersuchung muss das Objekt, egal ob Mensch oder Werkstück, gleichmäßig und vollständig mit der Röntgenröhre umrundet werden. Materialforscher, Mathematiker und Informatiker der Universität des Saarlands wollen jetzt mit einem neuen Verfahren die 3D-Röntgentechnik auch auf großflächige Objekte anwenden. Die Deutsche Forschungsgemeinschaft fördert das Projekt über drei Jahre mit 765.000 Euro.

Abb.: Philipp Slusallek will großflächige Objekte wie Autos und Flugzeuge mit 3D-Röntgentechnik durchleuchten. (Bild: bellhäuser / UdS)

„Bei der klassischen Computertomographie werden Objekte gleichmäßig aus allen Richtungen mit Röntgenstrahlen durchleuchtet. Dies vereinfacht die mathematischen Rechenverfahren, mit denen das dreidimensionale Objekt am Computerbildschirm aus den vielen Aufnahmen rekonstruiert wird“, erläutert Alfred Louis, Professor für angewandte Mathematik der Saar-Uni. Für großflächige, gekrümmte Werkstücke wie etwa Flugzeugflügel oder Rotorblätter von Windkraftanlagen kann man diese Technik jedoch nicht einsetzen. Hier soll deshalb jetzt die Computerlaminographie weiter helfen, bei der die Objekte schichtweise abgebildet werden. „Das Objekt liegt dabei zwischen Röntgenquelle und Detektor und wird nicht vollständig umrundet“, erläutert Louis. Dadurch ist es allerdings wesentlich schwerer, die 3D-Struktur der Objekte aus den Aufnahmen zu rekonstruieren.

Die Saarbrücker Mathematiker wollen daher neue Rechenverfahren entwickeln, um die komplexe Geometrie auch großer Objekte zu erfassen. Gemeinsam mit dem Team von Informatik-Professor Philipp Slusallek sollen diese Algorithmen auf neue, äußerst schnelle Multi-Core-Hardware angepasst werden. „Damit soll es künftig möglich werden, die Produktqualität auch im laufenden Betrieb zu überwachen, zum Beispiel in Fertigungsstraßen für Leiterplatinen“, erklärt Philipp Slusallek. Mitentwickelt und in der Praxis erprobt werden die neuen Verfahren in der Arbeitsgruppe von Michael Maisl, der als promovierter Ingenieur am Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP auf dem Saarbrücker Uni-Campus forscht. Sein Team bringt Kenntnisse aus der Röntgenphysik und Werkstofftechnik in das Forschungsprojekt ein.

UdS / OD

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen