Einheitliche Theorie für Skyrmionen-Materialien
Erstmals elektromagnetische Eigenschaften isolierender, halbleitender und leitender skyrmionischer Materialien charakterisiert.
Vor mehr als sechs Jahren entdeckten Physiker der TU München in einer metallischen Legierung aus Mangan und Silizium extrem stabile magnetische Wirbelstrukturen. Mit diesen Skyrmionen lassen sich sehr effizient Informationen speichern oder verarbeiten, sie können aber auch als Hochfrequenz-Bausteine dienen. Zusammen mit theoretischen Physikern der Universität zu Köln treiben sie seitdem diese Technologie weiter voran.
Abb.: Ein Mikrowellenfeld um die mittlere (Signal) und die beiden äußeren Leiterbahnen (Masse) induziert Spinwellen in der Materialprobe. (Bild: TUM)
Da die magnetischen Wirbel mikroskopisch klein sind und sich sehr leicht bewegen lassen, könnten Computerbausteine mit dieser Technologie 10.000 mal weniger Strom benötigen und wesentlich größere Datenmengen speichern als heute. Neuere Forschungsergebnisse zeigten, dass sich die einzigartigen elektromagnetischen Eigenschaften der Skyrmionen auch für den Bau effizienter und sehr kleiner Mikrowellen-Sender und –Empfänger nutzen ließen.
Um Computerchips herstellen zu können, sind isolierende, halbleitende und leitende Materialien nötig. Für alle drei Materialklassen sind inzwischen Materialien bekannt, die magnetische Wirbelstrukturen ausbilden. Entscheidend ist aber, dass diese Wirbel schnell auf Wechselfelder reagieren, damit Informationen mit hoher Rate verarbeitet werden können. Das dynamische Verhalten der drei Materialen untersuchte nun ein Team von Physikern der TU München, der Universität zu Köln und der École Polytechnique Fédérale de Lausanne.
Aus den Ergebnissen ihrer Messungen entwickelte das Team eine für alle drei Materialklassen gültige theoretische Beschreibung des Verhaltens. „Mit dieser Theorie haben wir für die weitere Entwicklung ein wichtiges Fundament geschaffen“, sagt Dirk Grundler, Inhaber des Lehrstuhls für Physik funktionaler Schichtsysteme an der TU München. „Damit können wir in Zukunft gezielt Materialien mit bestimmten Eigenschaften ermitteln, so wie wir sie für ein Bauelement brauchen."
Die typischen Eigenfrequenzen der Skyrmionen liegen im Mikrowellen-Bereich. In diesem Frequenzbereich senden beispielsweise Handys, WLAN und viele Arten mikroelektronischer Fernsteuerungen. Dank der Robustheit der magnetischen Wirbel und ihrer leichten Anregbarkeit ließen sich mit Skyrmionen-Materialien sehr effiziente Mikrowellen-Sender und -Empfänger bauen.
Während die Wellenlänge elektromagnetischer Mikrowellen typischerweise im Bereich von Zentimetern liegt, sind die Wellenlängen magnetischer Spin-Wellen, der Magnonen, 10.000-mal kürzer. „Aus magnetischen Nanomaterialien wie den Skyrmionen-Materialien ließen sich daher sehr viel kompaktere oder gänzlich neue Bausteine für die Mikroelektronik herstellen“, sagt Grundler.
Abb.: Magnetische Spin-Wellen in einem Festkörper (Bild: Chr. Hohmann, NIM, TUM)
Neben dem Material ist für die elektromagnetischen Eigenschaften auch die Form des Bausteins entscheidend. Auch hier hilft die von den Wissenschaftlern entwickelte Theorie. Mit ihr können die Forscher voraussagen, welche Form bei welchem Material die besten Eigenschaften hervorbringt.
„Chiral-magnetische Materialien versprechen viele neue Funktionalitäten mit interessantem Zusammenspiel von elektronischen und magnetischen Eigenschaften“, sagt Markus Garst, Physiker am Institut für Theoretische Physik der Universität zu Köln. „Doch für alle Anwendungen ist es unverzichtbar, die Möglichkeiten und Grenzen verschiedener Materialien vorauszusagen. Dem sind wir nun einen entscheidenden Schritt näher gekommen."
TUM / OD