Graphen bald in Solarzellen?
Graphen bleibt Graphen, auch unter einer Schicht von Silizium.
Graphen ist extrem leitfähig und vollkommen lichtdurchlässig, dabei billig und ungiftig. Damit eignet es sich perfekt als transparente Kontaktschicht in Solarzellen zum Abführen des Stroms, ohne den Lichteinfall zu verringern, zumindest theoretisch. Ob dies auch in der realen Welt funktioniert, war aber fraglich, denn „ideales“ Graphen – eine freischwebende flache Wabenstruktur aus einer einzigen Lage Kohlenstoffatome – gibt es nicht.
Abb.: Die Graphen-Schicht ist nur eine Atomlage dick, Ladungsträger können sich allerdings sehr frei darin bewegen. (Bild: M. A. Gluba / HZB)
Wechselwirkungen mit benachbarten Schichten können die Eigenschaften von Graphen jedoch drastisch verändern. Marc Gluba und Norbert Nickel vom Institut für Silizium-Photovoltaik des Helmholtz-Zentrums Berlin haben nun gezeigt, dass Graphen seine beeindruckenden Eigenschaften behält, wenn es mit einer dünnen Silizium-Schicht bedeckt wird. Damit eröffnen sie für die Dünnschicht-Photovoltaik ganz neue Möglichkeiten.
„Wir haben untersucht, wie sich die Leitungseigenschaften von Graphen verändern, wenn es in einen Schichtstapel ähnlich dem einer Dünnschicht-Silizium-Solarzelle eingebaut wird. Wir waren selbst überrascht, dass wir nachweisen konnten, dass sich diese Eigenschaften dadurch nur wenig verändert haben“, erklärt Marc Gluba.
Die Forscher stellten dafür Graphen auf einer Kupferfolie her, transferierten es auf ein Glas-Substrat und schieden dann eine dünne Schicht aus Silizium darüber ab. Dabei untersuchten sie zwei Varianten, wie sie auch in den gängigen Silizium-Dünnschicht-Technologien verwendet werden: zum einen eine Probe mit einer amorphen Siliziumschicht, in der die Silizium-Atome wie in einer erstarrten Schmelze ungeordnet waren; zum anderen untersuchten sie, wie sich ein typischer Kristallisationsprozess, der das ungeordnete Silizium in seine kristalline Phase überführte, auf die Eigenschaften des Graphens auswirkte.
Obwohl sich das Gefüge der Deckschicht infolge der Erwärmung auf mehrere hundert Grad Celsius komplett veränderte, war das vergrabene Graphen auch danach noch nachzuweisen. Messungen über den Hall-Effekt zeigten, dass die Beweglichkeit von Ladungsträgern in der eingebetteten Graphen-Schicht rund 30-mal höher lag als in konventionellen Kontaktschichten aus Zinkoxid. „Allerdings ist es noch sehr schwierig, diese nur eine Atomlage dünne Kontaktschicht mit äußeren Kontakten zu verbinden, daran müssen wir noch arbeiten“, erklärt Gluba.
Die Forscher haben ihre Messungen an Quadratzentimeter großen Proben gemacht. Es ist praktisch aber möglich, viel größere Flächen mit Graphen zu beschichten. „Die Kollegen von den Dünnschichttechnologien spitzen schon die Ohren und wollen das einbauen“, sagt Nickel.
HZB / PH