17.06.2015

Gut Akku will Weile haben

Röntgen-Fluoreszenz-Aufnahmen zeigen Schäden bei schnellem Laden von Lithium-Ionen-Akkus.

Zu schnelles Laden von Lithium-Ionen-Akkus kann die Akkukapazität dauerhaft herabsetzen. Dabei werden Teile der Struktur des Energiespeichers zerstört und deaktiviert. Derartige Strukturveränderungen hat DESY-Forscherin Ulrike Bösenberg mit ihrem Team an der Röntgenstrahlungsquelle PETRA III jetzt erstmals abgelichtet. In ihren Fluoreszenzuntersuchungen zeigen sich bereits nach wenigen Ladezyklen deutliche Schäden an der inneren Struktur des Akkumaterials, die bei langsamer Ladung nicht auftreten.

Abb.: Nach 25 Schnellladezyklen zeigt die Mangan-Verteilung in der Elektrode deutliche Löcher. (Bild: U. Bösenberg / DESY)

Lithium-Ionen-Akkus sind sehr gebräuchlich, weil sie eine hohe Ladungsdichte haben. Typischerweise lässt nach 1000 Ladungen und Entladungen die Speicherkapazität deutlich nach. Ein vielversprechender Kandidat für eine neue Generation dieser Energiespeicher, vor allem wegen ihrer hohen Spannung von 4,7 Volt, sind sogenannte Lithium-Nickel-Manganoxid- oder LNMO-Spinell-Materialien. Die Elektroden bestehen aus Minikristallen, sogenannten Kristalliten, die mit Bindermaterial und leitendem Kohlenstoff zu dünnen Schichten verbunden werden.

Das Team um Bösenberg, zu dem auch Forscher der Universität Gießen, der Universität Hamburg und von der australischen Forschungsorganisation CSIRO gehören, untersuchte die negativen Elektroden dieser LiNi0.5Mn1.5O4-Verbindung an der Mikrofokus-Strahlführung P06 der Röntgenquelle PETRA III bei DESY. Mit Hilfe eines neuartigen Röntgen-Fluoreszenzdetektors konnten sie auf einen halben Mikrometer genau die Verteilung von Nickel und Mangan über große Bereiche auf der Elektrode bestimmen. Aus Atomen dieser Übergangsmetalle ist das molekulare Trägergerüst der Akkuelektrode aufgebaut – ein relativ starres Kristallgitter, in das sich die Lithium-Ionen dann als bewegliche Ladungsträger ein- oder ausklinken können.

Bei ihren Untersuchungen setzten die Forscher verschiedene Akkuelektroden jeweils 25 Lade- und Entladezyklen mit drei verschiedenen Geschwindigkeiten aus und vermaßen die elementare Verteilung der Bestandteile in den Elektroden. Wie die Forscher feststellten, können sich bei schneller Ladung die Mangan- und Nickel-Atome aus der Kristallstruktur lösen. Sie beobachteten sogar richtige Löcher in der Elektrode mit bis zu 100 Mikrometern Durchmesser. Die zerstörten Bereiche stehen dann nicht mehr für die Lithium-Speicherung zur Verfügung.

In ihren Untersuchungen mit der Röntgenfluoreszenzmethode machten sich die Forscher zunutze, dass Röntgenlicht chemische Elemente zur Fluoreszenz, der kurzzeitigen Aussendung von Strahlung, anregen kann. Die Wellenlänge oder Energie der Fluoreszenzstrahlung liefert dabei einen charakteristischen Fingerabdruck des jeweils ausstrahlenden chemischen Elements. So lässt sich die Verteilung der einzelnen Stoffe in der Elektrode genau ermitteln. Die Forscher nutzten hierfür einen neuartigen Fluoreszenzdetektor, von dem es in dieser Form weltweit nur zwei Exemplare gibt. Dieser „Maia“-Detektor, eine Entwicklung der CSIRO und des US-Forschungszentrums BNL, besteht aus fast 400 einzelnen Elementen, die die Fluoreszenzstrahlung der Probe einsammeln. Durch seine hohe Energieauflösung und Empfindlichkeit ist der Detektor in der Lage, mehrere chemische Elemente gleichzeitig zu lokalisieren.

Durch den feinen und hochintensiven Röntgenstrahl von PETRA III konnte die rund zwei auf zwei Quadratmillimeter große Probenfläche auf einen halben Mikrometer genau abgetastet werden. Die Untersuchung jedes Punktes dauerte dabei lediglich eine tausendstel Sekunde. „Es ist das erste Mal, dass wir diese Inhomogenitäten mit so einer hohen Ortsauflösung über einen so großen Bereich lokalisieren konnten“, sagt Bösenberg. „Wir hoffen, die Effekte so besser zu verstehen und die Grundlage für bessere Energiespeicher zu schaffen.“

Rätselhaft ist noch, wo die herausgelösten Nickel- und Mangan-Atome bleiben – das wollen die Wissenschaftler in Folgeuntersuchungen herausfinden. „Es gibt deutliche Hinweise darauf, dass sich das herausgelöste Material zumindest teilweise an der Anode ablagert und so die Akkueigenschaften doppelt schädigt“, resümiert Bösenberg.

DESY / DE

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen