Heißer Ofen, kalter Mars
V/VI-Verbindungshalbleiter und Lichtleitfasern aus Saphir für Temperaturmessung im Extremen.
Ein gewaltiger Sandsturm fegt durch die Wüste, aber es ist nicht heiß, im Gegenteil, es sind -35 Celsius. Gäbe es Wasser, das zu Schnee gefrieren könnte, könnte man auf den riesigen Bergen Wintersport betreiben. Der NASA-Roboter Curiosity setzt unbeirrt seinen Weg fort, um auf dem Mars Spuren von Wasser und Leben zu finden. Mit an Bord sind Temperatursensoren aus dem Institut für Photonische Technologien Jena e.V. (IPHT). Seit der Landung auf dem roten Planeten zeichnen sie zuverlässig die Bodentemperatur auf. Keine leichte Aufgabe bei Temperaturunterschieden von 150°C und ohne Stromzufuhr.
Abb.: Lichtleitfasern aus Saphir eignen sich für zur Messung von Temperaturen über 1200 Grad Celsius. (Bild: IPHT / Döring)
„Unsere Sensoren musste schon vor der Reise einiges einstecken, so beispielsweise Vibrationstests mit Beschleunigungen von bis zu 8 g. Trotz der außergewöhnlichen mechanischen und thermischen Belastungen müssen die Sensoren eine hohe Sensitivität aufweisen“, beschreibt Ernst Keßler, Projektleiter am IPHT, die Leistungsfähigkeit der Sensoren. Sie basieren auf dem thermoelektrischen Prinzip und besitzen 100 in Reihe geschaltete Thermopaare. Diese bestehen aus zwei thermoelektrischen Materialien, die in der Empfängerfläche sowie auf dem Chiprahmen alternierend miteinander verbunden sind. Zwischen der Empfängerfläche und dem Chiprahmen, die thermisch gut voneinander isoliert sind, bildet sich deshalb bei Bestrahlung ein Temperaturunterschied aus, der über den thermoelektrischen Effekt (Seebeck-Effekt) in eine elektrische Spannung gewandelt wird.
Die hohe Empfindlichkeit erreichen die IPHT-Sensoren durch den Einsatz einer besonderen Materialkombination. Die Verwendung der thermoelektrisch hocheffektiven Kombination von V/VI-Verbindungshalbleitern auf Basis von Bismut und Antimon ist ein Alleinstellungsmerkmal der im Reinraum des Jenaer Institutes gefertigten Thermosäulen-Sensoren. Weitere Vorteile von thermoelektrischen Strahlungssensoren sind ihre Linearität, sowie ihre Energieeffizienz. Da das elektrische Signal allein durch die Temperaturdifferenz erzeugt wird, muss der Sensor nicht auf die wertvolle Energie der Atombatterie von Curiosity zurückgreifen.
Nicht nur im Forschungsbereich Photonische Detektion sondern auch auf dem Gebiet der Faseroptik erforscht das IPHT seit vielen Jahren Systeme zur Temperaturmessung unter extremen Bedingungen. Lichtleitfasern aus Saphir eignen sich für Anwendungen im anderen Extrem: der Messung von Temperaturen über 1200 Grad Celsius.
In industriellen Hochöfen wird aus Eisenerz flüssiges Roheisen geschmolzen. Für diesen komplizierten Prozess ist die Einhaltung von unterschiedlich heißen Temperaturzonen in den 30 bis 50 Meter hohen Schachtöfen essentiell. In vielen Fällen werden zur Temperaturerfassung dort noch Thermoelemente eingesetzt. Diese müssen aber aufgrund der extremen Beanspruchungen im Hochofen preisintensiv in kurzen Intervallen ausgewechselt werden. Eine andere Art von Thermosensoren sind Pyrometer. Ihre Messung basiert darauf, dass jeder Gegenstand über dem absoluten Nullpunkt Wärmestrahlung aussendet, deren Intensität von seiner Temperatur abhängt. Wenn das Messobjekt wärmer als das Pyrometer ist, ist der Strahlungsfluss positiv, d.h. das Messobjekt gibt Wärmestrahlung an das Pyrometer ab. Pyrometer können die Temperatur allerdings nur an Oberflächen messen, also an den Ofenwänden oder der Schmelze selbst, aber nicht im Rest des großen Ofenvolumens.
Das IPHT hat erfolgreich Tests in Öfen mit einem alternativen faserbasierten Verfahren absolviert, das diese Nachteile nicht hat. Das Sensorkonzept nutzt die von Temperaturschwankungen hervorgerufenen Veränderungen der optischen Eigenschaften einer Saphir-Lichtleitfaser. Saphir ist säureunlöslich und schmilzt erst bei einer Temperatur von 2040 Grad Celsius. Als einziger Gruppe weltweit gelingt es am IPHT die Faser-Bragg-Gitter genannten Strukturen in Saphirfasern hineinzuschreiben. Durch die Temperatur im Ofen ändert sich einerseits die Brechzahl der Faser und durch die Ausdehnung andererseits der Abstand der Gitterebenen. Durch beide Effekte wird das durch die Faser laufende Lichtbündel mit anderen Wellenlägen reflektiert, was in einem angeschlossenen Spektrometer gemessen wird. „Die Ergebnisse sind sehr vielversprechend und wir werden sie demnächst in Langzeitstudien auf ihre Stabilität überprüfen“, so Habisreuther.
IPHT / PH