27.08.2013

Hubble-Bubble soll Wachstum des Universums erklären

Theoretisches Modell zur Interpretation der Daten des Planck-Satelliten vorgestellt.

Unterschiedliche Messergebnisse zum Wachstum und damit zum Alter des Universums können zumindest teilweise durch die Existenz sogenannter Hubble-Bubbles erklärt werden. Davon geht ein Team von Physikern um Luca Amendola vom Institut für Theoretische Physik der Universität Heidelberg aus. In Zusammenarbeit mit Kollegen aus den Niederlanden entwickelten die Heidelberger Physiker ein theoretisches Modell, nach dem die Milchstraße in einer solchen kosmischen Blase liegt. Auf diesem Weg lässt sich nach Angaben der Wissenschaftler ein Teil der Abweichungen erklären, die die aktuellen Messwerte des Planck-Satelliten der Europäischen Weltraumorganisation ESA gegenüber bisherigen Messungen aufweisen.

Abb.: Multi-Frequenz-Aufnahme des kosmischen Mikrowellen-Hintergrundes, vermessen vom Planck-Teleskop im Bereich von 30 bis 857 Gigahertz. (Bild: ESA/ LFI & HFI)

Der von den Menschen beobachtbare Teil des Universums expandiert seit dem Urknall und dehnt sich bis heute immer weiter aus. Dies führt dazu, dass Galaxien von der Milchstraße fortgetrieben werden. Die aktuelle Geschwindigkeit dieses Wachstums heißt Hubble-Konstante. Sie zu bestimmen, gehört zu den Aufgaben der modernen Kosmologie, da sie unter anderem für die Berechnung grundlegender Eigenschaften des Universums, wie etwa seines Alters, bedeutsam ist. Für die Bestimmung der Hubble-Konstante gibt es zwei gebräuchliche Messmethoden, deren Ergebnisse jedoch nicht deckungsgleich sind, wie Valerio Marra vom Institut für Theoretische Physik der Universität Heidelberg erläutert: „Dies führt in der Wissenschaft seit langem zu intensiven und anhaltenden Diskussionen.“

Ein Weg, die Hubble-Konstante und damit die Expansionsrate des Universums zu bestimmen, beruht darauf, die kosmische Mikrowellenhintergrund-Strahlung zu messen. Messergebnisse aus dieser Strahlung ermittelte vor wenigen Monaten das Weltraumteleskop Planck der ESA. Im Vergleich dazu lässt sich die Hubble-Konstante ebenfalls aus der – größtenteils auf die Expansion des Universums zurückgehenden – Bewegung von Galaxien in der Nachbarschaft der Milchstraße ableiten. „Vergleicht man die Messwerte beider Methoden, ergibt sich eine Abweichung von rund neun Prozent“, sagt Marra.

Auf der Suche nach einer Erklärung dieses Unterschieds der Daten gingen die Heidelberger Forscher davon aus, dass es sich nicht um einen bisher unerkannten Messfehler handelt, sondern die Abweichungen auf einen physikalischen Effekt zurück gehen. Eine Ursache dafür könnte nach Ansicht von Marra die Existenz von Hubble-Bubbles sein. So bezeichnet man Regionen im Universum, in denen die Dichte der Materie unter dem kosmischen Mittelwert liegt.

„Die Kenntnis unserer kosmischen Nachbarschaft ist bisher zu ungenau, um feststellen zu können, ob wir uns in solch einer Blase befinden“, erklärt Marra. „Nehmen wir jedoch einmal an, dass unsere Milchstraße in einer Hubble-Bubble liegt. Dann würde die Materie außerhalb der Blase die Galaxien in unserer Nachbarschaft stark anziehen, so dass sich diese überdurchschnittlich stark bewegen. In diesem Fall würden wir eine erhöhte Hubble-Konstante messen, die zwar für unsere kosmologische Nachbarschaft gilt, nicht jedoch für das Universum als Ganzes.“

Dies könnte nach den Worten Marras zum Teil den „Konflikt“ der unterschiedlichen Messergebnisse erklären: Bei der vom Planck-Satelliten gemessenen Hubble-Konstante handele es sich dann um einen räumlichen Mittelwert, der für das Universum als Ganzes gelte. Die anhand der Galaxienbewegung bestimmte Hubble-Konstante gälte dann jedoch nur in der Umgebung der Milchstraße. „Wer erwartet, dass die Messungen aus unserer kosmischen Nachbarschaft dieselben Ergebnisse wie die der Mikrowellenstrahlung ergeben, der nimmt dabei implizit an, dass wir in einer typischen Region des Kosmos leben. Das muss jedoch nicht sein“, erklärt Amendola, dessen Arbeitsgruppe sich seit vielen Jahren mit der Expansion des Kosmos beschäftigt.

Mit ihrem Forschungsansatz können die Wissenschaftler bislang rund ein Viertel der Abweichung zwischen den beiden Hubble-Konstanten begründen. Von einer detaillierteren Analyse erwarten Marra und seine Kollegen, dass sich die Diskrepanz noch weiter reduzieren lässt. „Bisher arbeiten wir in unserem Modell mit einer kugelförmigen Hubble-Bubble. Aber es ist viel wahrscheinlicher, dass eine solche Blase eine asymmetrische Form aufweist, wodurch sich die abweichenden Messwerte wahrscheinlich noch besser erklären lassen“, sagt Ignacy Sawicki, der ebenfalls am Institut für Theoretische Physik der Universität Heidelberg forscht. „Sollte sich der Unterschied der Daten stattdessen manifestieren, wäre dies ein wichtiger Hinweis darauf, dass in der bisherigen naturwissenschaftlichen Vorstellung des Kosmos noch eine Zutat fehlt“, betont er.

U. Heidelberg / PH

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen