Photonenpaar auf Knopfdruck
Quantenpunkte erzeugen mit resonantem Anregungsprozess genau zwei verschränkte Photonen.
Verschlüsselung mit Quanten (Quantenkryptographie) oder das optische Quanten-Computing benötigen spezielle Lichtzustände: ununterscheidbare und verschränkte Photonenpaare in zeitlich wohl definierten Pulsen. Bisherige Verfahren zur deren Erzeugung führen jedoch zu eher zufälligen Ergebnissen hinsichtlich der Zahl der Photonenpaare in einem Puls. Die Folge sind Fehler in den Quantenalgorithmen, was deren Nützlichkeit für deterministische Quantentechnologien, bei denen es auf die Vorhersagegenauigkeit ankommt, stark einschränkt. In einem Experiment, das auf einem Halbleiter-Quantenpunkt basiert, haben Physiker der Universität Stuttgart nun gezeigt, wie man sozusagen auf Knopfdruck einzelne ununterscheidbare und polarisationsverschränkte Photonenpaare erzeugen kann.
Abb.: Optische Anregung eines Halbleiter-Quantenpunktes mit einem kurzen Laserpuls (grün), der einzelne verschränkte Photonenpaare (rot bzw. blau) aussendet. (Bild: U. Stuttgart)
Halbleiter-Quantenpunkte sind für die Erzeugung von verschränkten Photonenpaaren aufgrund ihrer Eigenschaften ideal geeignet. So lässt sich der Quantenpunkt durch einen kurzen optischen oder elektrischen Puls anregen; und anschließend kann unter geeigneten Bedingungen ein so genanntes polarisationsverschränktes Photonenpaar freigesetzt und für Anwendungen genutzt werden. Bei solchen Photonenpaaren ist die Polarisation jedes einzelnen der beiden Photonen zunächst komplett unbestimmt. Erst die gezielte Messung an einem der beiden Photonen erlaubt dann auch eine direkte Aussage über die Polarisation des zweiten Photons.
In bisherigen Arbeiten zur Erzeugung von verschränkten Photonenpaaren wurden die Quantenpunkte elektrisch oder nicht-resonant optisch angeregt. Diese Anregungsweise bringt jedoch einige Nachteile mit sich. So werden nicht für jeden Anregungspuls exakt zwei Elektron-Loch-Paare angeregt und anschließend zwei verschränkte Photonen emittiert. Vielmehr kommt es auch vor, dass nur ein einzelnes Photon oder mehr als zwei Photonen freigesetzt werden. Noch problematischer ist der Umstand, dass unter diesen Anregungsbedingungen auch viele Ladungsträger in der Umgebung des Quantenpunktes erzeugt werden. Die Wechselwirkung dieser Ladungsträger mit den Ladungsträgern im Quantenpunkt führt zu Dekohärenzprozessen, die letztendlich die Ununterscheidbarkeit der Photonen begrenzen.
Physikern am Institut für Halbleiteroptik und Funktionelle Grenzflächen unter der Leitung von Peter Michler ist es nun gelungen, mit einem sogenannten resonanten Zweiphoton-Anregungsprozess den Quantenpunkt mit genau zwei Elektron-Loch-Paaren anzuregen. In der Folge wird dadurch auch nur ein verschränktes Photonenpaar emittiert. Darüber hinaus konnte gezeigt werden, dass die so resonant erzeugten Photonen zu einem hohen Grad ununterscheidbar sind, womit sie für die oben genannten Anwendungen bestens geeignet sind.
Die im Experiment erzielte Photonenpaarerzeugungsrate von 86 Prozent konnten die Forscher in Zusammenarbeit mit dem theoretischen Physiker Martin Glässl von der Universität Bayreuth ermitteln. Diese gemeinsame Arbeit ist nun Ausgangspunkt für eine Reihe weiterer Experimente, bei denen die Photonenquelle zum Beispiel für Experimente zur Quantenteleportation von Photonen eingesetzt werden soll.
U. Stuttgart / DE