03.08.2015

Schnelle Plasmonen-Pulse

Neuartiger Mach-Zehnder-Modulator bringt hohen Datendurchsatz bei der Konversion elektro-optischer Signale.

Um Daten schneller und energieeffizienter zwischen elektronischen Chips auszutauschen, sind kompakte optische Übertragungs­möglichkeiten von großem Interesse. Ein Bauteil dazu ist der Mach-Zehnder-Modulator (MZM), der elektronische in optische Signale konvertieren kann. Forscher des KIT und der ETH haben nun einen plasmonischen MZM mit nur 12,5 Mikrometern Länge entwickelt, der digitale elektrische in optische Signale mit einer Rate von bis zu 108 Gigabit pro Sekunde konvertiert.

Abb.: Mikromodulator aus Gold in einer elektronenmikroskopischen Aufnahme. Im Schlitz in der Bildmitte wird Licht in Plasmon-Polaritonen umgewandelt, moduliert und wieder in Lichtpulse zurückgewandelt. (Bild: Haffner et al.)

„Gerade bei der Übertragung von Daten zwischen Computerchips bieten optische Technologien ein enormes Potenzial“, erklärt Manfred Kohl vom KIT. In dem von ihm geleiteten EU-Projekt NAVOLCHI (Nano Scale Disruptive Silicon-Plasmonic Platform for Chip-to-Chip Interconnection), wurde der plasmonische Modulator entwickelt, der dem aktuellen MZM zugrunde liegt. „Kompakte, optische Sende- und Empfangseinheiten könnten die Geschwindigkeitsgrenzen heutiger Elektronik durchbrechen und helfen, die Engpässe in den Datenzentren abzuschaffen.“

Der neue MZM ist nur 12,5 Mikrometer lang, also etwa ein Zehntel der Dicke eines Haares. Er besteht aus zwei Armen, in denen sich je ein elektro-optischer Modulator befindet. Jeder Modulator besteht aus einem Metall-Isolator-Metall-Wellenleiter mit einem rund 80 Nanometer breiten, mit elektro-optischem Kunststoff gefüllten Spalt und Gold-Seitenwänden, die zugleich als Elektroden funktionieren. An den Elektroden liegt eine Spannung an, die im Takt der digitalen Daten moduliert wird. Der elektro-optische Kunststoff ändert seinen Brechungsindex in Abhängigkeit von der Spannung. Wellenleiter und Koppler aus Silizium führen die beiden Anteile eines aufgespaltenen Lichtstrahls zu den Spalten oder davon weg.

Die Lichtstrahlen der Wellenleiter regen im jeweiligen Spalt elektromagnetische Oberflächenwellen, sogenannte Oberflächen-Plasmonen an. Durch die am Kunststoff anliegende Spannung werden die Oberflächenwellen moduliert. Die Modulation erfolgt in beiden Spalten unterschiedlich, aber kohärent, da dieselbe Spannung mit unterschiedlicher Polung anliegt. Nach Durchlaufen der Spalte treten die Oberflächenwellen zunächst als modulierte Lichtstrahlen in die Ausgangs-Lichtwellenleiter ein und werden danach überlagert. Als Ergebnis erhält man einen Lichtstrahl, in dessen Amplitude die digitale Information kodiert ist.

Im Experiment arbeitet der MZM zuverlässig im gesamten Spektralbereich der Breitband-Glasfaser-Netzwerke von 1500 bis 1600 Nanometern bei einer elektrischen Bandbreite von 70 Gigahertz mit Datenströmen von bis zu 108 Gigabit pro Sekunde. Die hohe Modulationstiefe folgt aus der hohen Fertigungs­genauigkeit der Silizium-Technologie. Der MZM lässt sich mit weitverbreiteten CMOS-Verfahren aus der Mikroelektronik herstellen und damit leicht in aktuelle Chiparchitekturen integrieren.

Derzeit werden in Deutschland rund zehn Prozent des Stroms durch Informations- und Kommunikations­technologien verbraucht, etwa durch Computer und Smartphones beim Nutzer, aber auch durch die Server in großen Rechenzentren. Da der Datenverkehr exponentiell anwächst, bedarf es neuer Ansätze, die den Durchsatz steigern und gleichzeitig den Energieverbrauch dämpfen. Plasmonische Bauteile könnten hier einen entscheidenden Beitrag liefern.

Ziel des EU-Projekts NAVOLCHI ist es, die Interaktion von Licht und Elektronen in Metall­oberflächen auszunutzen, um neuartige Bauteile für die optische Datenübertragung zwischen Chips zu entwickeln. Das Projekt wird im siebten Forschungs-Rahmenprogram der EU gefördert und verfügt über ein Budget von 3,4 Millionen Euro.

KIT / DE

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen