15.05.2012

Schwarze Löcher heizen dem Universum ein

Theoretiker gewinnen neue Erkenntnisse über die Entstehung von Strukturen im Weltall.

Die Weltraumforscher nahmen bisher an, extrem massereiche schwarze Löcher könnten nur ihre unmittelbare Umgebung beeinflussen. Wissenschaftler am Heidelberger Institut für Theoretische Studien (HITS) fanden jetzt gemeinsam mit kanadischen und US-amerikanischen Kollegen heraus, dass diffuses Gas im Universum die helle Gammastrahlung solcher aktiven galaktischen Kernen absorbiert und sich dabei aufheizt. Diese überraschende Erkenntnis hat wichtige Konsequenzen für die Entstehung von Strukturen im Universum.

Abb.: Im simulierten Linienwald eines Quasarspektrums stellt das blaue Spektrum ein Universum ohne Blazarheizen dar, das rote eines mit Blazarheizen. Deutlich ist, dass der zusätzliche Heizprozess neutralen Wasserstoff ionisiert und damit weniger UV-Licht eines Quasars absorbiert wird. (Bild: HITS)

Im Zentrum jeder Galaxie befindet sich ein extrem massereiches schwarzes Loch. Es kann hochenergetische Gammastrahlung aussenden und wird dann Blazar genannt. Andere Strahlung wie zum Beispiel sichtbares Licht oder Radiowellen durchquert das Universum ohne Probleme. Dies trifft für energiereiche Gammastrahlung nicht zu. Diese Strahlung steht in Wechselwirkung mit dem optischen Licht, das die Galaxien aussenden, und wird in die Elementarteilchen Elektronen und Positronen umgewandelt. Die Elementarteilchen bewegen sich anfänglich fast mit Lichtgeschwindigkeit, werden aber vom diffusen Gas im Universum abgebremst. Da jeder Bremsprozess Wärme erzeugt, heizt sich das umgebende Gas dabei extrem auf. Es wird im Durchschnitt zehnmal heißer und in den kosmischen Regionen mit weniger Dichte als im Durchschnitt sogar mehr als hundert Mal heißer als bisher angenommen.

„Blazare schreiben die thermische Geschichte des Universums um“, so Christoph Pfrommer vom HITS. Doch wie kann man eine solche Idee überprüfen? In den optischen Spektren von weit entfernten Quasaren sieht man eine Vielzahl von Linien, den sogenannten Linienwald. Der Wald entsteht bei Absorption von ultra-violettem Quasarlicht durch neutrale Wasserstoffatome in den frühen Entwicklungsphasen des Universums. Wenn das Gas nun heißer ist, dann sind die schwächsten Linien verbreitert. Dieser Effekt ergibt eine hervorragende Methode, die Temperatur im jungen Universum zu messen und damit quasi das Weltall in seiner Jugendzeit zu beobachten.

Die HITS-Astrophysiker überprüften diesen neu postulierten Heizprozess nun erstmals mit detaillierten Computersimulationen der kosmologischen Entstehung von Strukturen. Überraschenderweise zeigten sich die Linien gerade so verbreitert, dass sie mit der gemessenen Linienstatistik in den Quasarspektren genau übereinstimmen. „Damit können wir auf elegante Weise ein lange bestehendes Problem mit diesen Quasardaten lösen“, stellt Ewald Puchwein fest, der die Simulationen auf dem Großrechner am HITS durchführte.

Abb.: Ein supermassereiches schwarzes Loch, das von einem Staubring (Torus) umgeben ist. Der Einfall von Gas führt zu einem energiereichen Strahl aus Materie und Strahlung, der über kosmologische Distanzen transportiert werden kann. Wenn der Strahl in unsere Richtung zeigt, sprechen wir von einem „Blazar“ (Bild: ESA / NASA / AVO project, P. Padovani)

Welche weiteren Konsequenzen ergeben sich aus dieser neuen Heizquelle? Der Linienwald in den Quasarspektren wird durch Dichteschwankungen im Universum hervorgerufen. Dabei stürzen die dichtesten Fluktuationen im Laufe der Zeit zusammen, um Galaxien und Galaxienhaufen zu bilden, wie wir sie um uns herum beobachten. Wenn das diffuse Gas zu heiß ist, kann es nicht kollabieren, und die Entstehung von Zwerggalaxien verzögert sich oder wird sogar völlig unterdrückt. Hier könnte der Schlüssel zur Lösung eines weiteren Problems in der Theorie der Galaxienbildung liegen, das seit langem besteht: Warum werden in der Nähe unserer Milchstraße und in unterdichten kosmischen Regionen wesentlich weniger Zwerggalaxien beobachtet, als es kosmologische Simulationen vorhersagen?

Volker Springel, Leiter der Forschergruppe am HITS, erklärt: „Besonders aufregend an dem neuen Prozess des Blazarheizens ist, dass dieser Effekt gleich mehrere Rätsel in der kosmologischen Strukturentstehung erklären kann.“ Die Gruppe plant nun, die Simulationsmodelle weiter zu verfeinern und so die physikalische Natur der Blazare und ihre Auswirkungen auf das heutige Universum noch besser zu verstehen.

HITS / OD

Weitere Infos

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Anbieter des Monats

Dr. Eberl MBE-Komponenten GmbH

Dr. Eberl MBE-Komponenten GmbH

Das Unternehmen wurde 1989 von Dr. Karl Eberl als Spin-off des Walter-Schottky-Instituts der Technischen Universität München gegründet und hat seinen Sitz in Weil der Stadt bei Stuttgart.

Meist gelesen

Themen