08.08.2014

Ultraschnelle Lichtschalter für Magnetismus

Magnetkräfte passen sich nach neuem Modell elektrischen Anregungen durch Licht extrem schnell an.

Die Wechselwirkung zwischen mikroskopischen Spins bestimmt die Stärke eines Magneten und ist abhängig von den Wechselwirkungen zwischen den Elektronen in dem jeweiligen Material. Die Elektronen koppeln dabei in extrem schneller Geschwindigkeit an ein äußeres elektrisches Feld, wie etwa Laserlicht. Da diese Geschwindigkeit im Femtosekundenbereich liegt, ist jedoch weitgehend unklar, was dabei mit den magnetischen Kräften geschieht. Denn die vorhandenen theoretischen Konzepte und Formeln sind nicht auf so kurze Zeitskalen anwendbar. Mentink und Eckstein haben jetzt zwei neuartige theoretische Methoden kombiniert, um die Änderung von Magnetismus auf ultraschnellen Zeitskalen berechnen zu können. Die Ergebnisse zeigen, dass sich die magnetischen Kräfte fast augenblicklich an den angeregten Zustand der Elektronen anpassen und sich deshalb schnell und effektiv mit Licht manipulieren lassen.

Abb.: Künstlerische Darstellung der Beeinflussung von Licht durch magnetische Kräfte. Ein Laserpuls regt Elektronen an, die dann die Wechselwirkung der Spins ändern. (Bild: J. Mentink, CFEL)

Eine Abschwächung des Magnetismus erleichtert es, magnetische Bits umzuschalten – etwa auf einer Festplatte. Mit der aktuell besten zur Verfügung stehenden Technologie dauert ein solcher Schaltvorgang etwa eine Nanosekunde. Mentink und Eckstein haben nun gezeigt: Eine Schwächung der magnetischen Kräfte kann noch über 10.000 Mal schneller bewirkt werden. Genauso wie etwa modernste Lasertechnologie die Medizintechnik revolutioniert hat, könnte dieses Prinzip in Zukunft zu einer völlig neuen Generation von Speichermedien führen, die direkt auf elektrische Felder reagiert.

Die Forscher zeigten den Effekt anhand eines relativ einfachen Modells für ein nichtleitendes Festkörpermaterial. Dieses Ergebnis ist der Ausgangspunkt für weitere Forschungen mit anderen Materialien und verschiedenen Arten von Laserfeldern. Darüber hinaus interessiert es die Forscher, ob man Magnetismus auch gezielt verstärken kann. Mentink: „Unser Traum ist es, ein nicht-magnetisches Material magnetisch zu machen und ihm somit mehr Funktionalität zu geben. Noch ist es zu früh, um bestimmte Vorhersagen zu machen, aber wenn man zum Beispiel Silizium oder Graphen magnetisch machen könnte, hätte dies enorme Auswirkungen auf zukünftige technologische Entwicklungen.“ Für seine Arbeit in der Forschungsgruppe von Martin Eckstein an der Universität Hamburg erhielt Johan Mentink ein Rubicon-Forschungsstipendium der Netherlands Organisation for Scientific Research (NWO).

U. Hamburg / DE

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen