Vakuum-Greifer mit Muskel aus intelligentem Draht
Mechatronik-Student mit Innovationspreis der J. Schmalz GmbH ausgezeichnet.
Sie stapeln Kartons, laden zig Dosen gleichzeitig auf Paletten, befördern große Bleche oder transportieren Glasscheiben: Vakuum-Greifer sind heute vielerorts im Einsatz. Die gängigen Systeme arbeiten pneumatisch. Sie sind meist komplex, oft schwer und machen bisweilen recht viel Lärm. Das neuartige System, das der Student Julian Kunze am Lehrstuhl von Professor Stefan Seelecke entwickelt hat, ist schlicht, leicht, leise, effizient und sogar reinraumtauglich. Das Geheimnis beruht auf einem Draht, der eine ganz besondere Eigenschaft hat: Wie ein Muskel zieht er sich deutlich zusammen, wenn Strom durch ihn fließt. Sobald der Strom ausgeschaltet wird, wird er wieder so lang wie vorher. Formgedächtnis nennen das die Wissenschaftler.
Abb.: Julian Kunze demonstriert den Prototypen seines Vakuum-Greifers. (Bild: Filomena Simone)
„Diese Drähte mit Formgedächtnis bestehen aus Nickel-Titan“, erklärt Stefan Seelecke. „Formgedächtnis bedeutet, dass das Material seine ursprüngliche Form wieder annimmt, nachdem es verformt wurde; es erinnert sich sozusagen an seine alte Form. Diese Eigenschaft der Nickel-Titan-Legierung beruht auf so genannten Phasenumwandlungen: Wird der Draht warm, zum Beispiel wenn Strom hindurchfließt, wandelt sich seine Gitterstruktur so um, dass er kürzer wird. Kühlt er ab, wird er wieder länger“, erläutert er. Sein Forscherteam am Lehrstuhl für Unkonventionelle Aktorik an der Saar-Uni und am Zentrum für Mechatronik und Automatisierungstechnik „Zema“ nutzt diese Eigenschaft für verschiedenste Anwendungen: vom Inhalationsgerät, dessen Mundstück Wirkstoffteilchen gezielt an ihren Wirkort in der Lunge „schießt“, über neuartige Kühlsysteme bis hin zu Bauteilen, die sich geräuschlos und präzise heben und senken.
„Beim Vakuum-Greifer ist eine Membran direkt mit einem Formgedächtnisdraht verbunden, der gezielt angesteuert werden kann. So ist es möglich, nur mit elektrischem Strom ein tragfähiges Vakuum zu erzeugen“, erklärt Julian Kunze, studentischer Mitarbeiter in Seeleckes Team. „Dadurch, dass das System ganz ohne Druckluft, Gebläse, Pumpen oder sonstige größere Bestandteile auskommt, ist es platzsparend, leicht und auch der CO2-Ausstoß wird verringert“, sagt der 23-Jährige. Den Prototypen hat er selbst am Computer entworfen und am 3D-Drucker des Lehrstuhls ausgedruckt – komplett samt Rahmen und Membran. „Dadurch konnte ich den gesamten Prozess von der Idee über die Entwicklung bis zum fertigen Prototyp durchlaufen“, sagt er. Der Student arbeitet nun in Seeleckes Team daran, das System weiterzuentwickeln und weiter zu optimieren. „Die Tragfähigkeit dieses Vakuum-Greifers ist skalierbar – der Prototyp kann bereits ein Gewicht von einigen Kilos heben und sicher festhalten, aber das kann natürlich noch gesteigert werden“, sagt Professor Seelecke.
Abb.: Die Preisträger und Jury des Schmalz Innovationspreis 2014 (v.l.) Dr.-Ing. Heinz-Jürgen Prokop, Julian Kunze, Walter Thiel, Dr. Dipl.-Ing. Kurt Schmalz und vorne im Bild Johannes. (Bild: Schmalz)
Das Vakuum-Technologie-Unternehmen Schmalz hat Julian Kunze für seine Entwicklung Anfang Oktober mit dem anlässlich des 30 jährigen Firmenjubiläums erstmals verliehenen Schmalz Innovationspreis ausgezeichnet, der mit einer Siegprämie von 4.000 Euro und einem vierwöchigen Unternehmens-Praktikum bei Schmalz verbunden ist. Der mit 3.000 Euro dotierte 2. Platz ging an Walter Thiel aus dem Bereich Vorentwicklung Stanz-Kombimaschinen der Trumpf Werkzeugmaschinen GmbH + Co. KG. Er entwarf einen Magnetgreifer mit automatischer Teileanwesenheitskontrolle für das Handling von ferromagnetischen Teilen. Einen Sonderpreis vergab die Jury an den achtjährigen Johannes aus Braunschweig. Der Zweitklässler lieferte einen Entwurf für eine „Aufräummaschine“, die die lästigen Arbeiten im Kinderzimmer verrichten soll.
Uni Saarland / Schmalz / LK