27.04.2012

Was Atome zusammenhält

Physiker enthüllen Symmetrie chemischer Bindungen mit spezieller Mikroskopietechnik.

Physikern der Universität Regensburg gelang die quantitative Messung der Symmetrie von Bindungskräften auf atomarer Ebene mit höchster Präzision. Das Messverfahren lässt sich für weitere Untersuchungen der Nanowelt gezielt modifizieren. Auf dieser Grundlage kann nun von der Bindungsenergie auf die chemische Identität eines zu untersuchenden Atoms geschlossen werden. Ein „Atlas“ der Kräftewirkungen im atomaren Bereich ist für die Zukunft denkbar.

Abb.: Drei kubusförmige Salzkörner, von denen das linke auf einer Seitenfläche liegt, das mittlere auf einer Kante steht und das rechte auf der Spitze steht (oben). Die würfelförmige Struktur von Kochsalz kommt von der Symmetrie der NaCl-Bindungen. Die experimentell gemessene Stärken chemischer Bindungen zwischen einem Wolframatom (kubische Bindungssymmetrie) und einem Kohlenmonoxidmolekül, bei denen das Wolframatom genau so orientiert ist wie die Salzkörner darüber, sind unten aufgetragen. (Bild: U. Reg.)

Chemische Bindungen sichern den Zusammenhalt zwischen den Atomen in Molekülen und festen Körpern. Die chemischen Bindungskräfte bestimmen dabei den Aufbau der Moleküle und die Anordnung der einzelnen Atome zueinander (Winkelabhängigkeit). Beispiele sind die Struktur von Salz- und Zuckerkörnern oder die Form der Eisblumen, die im Winter mühsam vom Autofenster gekratzt werden müssen. Die Winkelabhängigkeit der einzelnen Atome eines Moleküls ist schon seit längerer Zeit bekannt, wurde aber bislang noch nicht mit hoher Präzision im Experiment untersucht. Dies wäre jedoch von fundamentaler Bedeutung, um die allgemeinen Eigenschaften und das Verhalten chemischer Bindungen besser verstehen zu können.

Forschern der Universität Regensburg ist jetzt in diesem Zusammenhang ein bedeutender Durchbruch gelungen. Joachim Welker und Franz Giessibl vom Institut für Experimentelle und Angewandte Physik konnten die Symmetrie von Bindungskräften auf atomarer Ebene quantitativ messen. Die Wissenschaftler analysierten dazu die Winkelabhängigkeit der chemischen Bindungskräfte zwischen einem Kohlenstoffmonoxidmolekül, das auf einer Kupferoberfläche anhaftete, und der metallenen Spitze einer Kombination aus Rasterkraftmikroskop und Rastertunnelmikroskop.

„Mit unseren Untersuchungen haben wir die atomare Symmetrie chemischer Verbindungen zwischen einzelnen Atomen eines Moleküls mit höchster Präzision bestimmt“, erklärt Giessibl. Und mehr noch: Die Regensburger Physiker sind auch in der Lage, die Sondenspitze ihres Mikroskops für ähnliche Untersuchungen systematisch zu modifizieren.
Der Umstand, dass die „Bindungsärmchen“ des vordersten Atoms der Mikroskopspitze gezielt ausgerichtet werden können, macht nun weitere Untersuchungen der Nanowelt möglich, die bis dahin nicht denkbar waren.

„Möglich wäre sogar, dass wir auf dieser Grundlage einen ‚Atlas der Kräftewirkungen im atomaren Bereich erarbeiten können“, bemerkt Welker. So sind die Regensburger Forscher derzeit dabei, ihre Untersuchungen auf andere Materialkombinationen auszudehnen. Welker dazu: „Wir können jetzt von der Bindungsenergie auf die chemische Identität eines zu untersuchenden Atoms schließen. Nach dem Motto: Wenn diese Kraft vorherrscht, dann muss es beispielsweise Wolfram oder Kupfer sein.“

U. Reg. / OD

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen