01.11.2024

Wie Elemente sich an Korngrenzen anlagern

Forschungsteam konnte erstmals die Bildung neuer Korngrenzphasen beobachten.

Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome die Struktur von Korngrenzen in Titan verändern. Dabei erlebten sie eine Überraschung: „Eisenatome lagern sich nicht nur an die Grenzfläche an, sondern bilden völlig unerwartete käfigartige Strukturen“, erklärt Christian Liebscher vom Research Center Future Energy Materials and Systems der Universitätsallianz Ruhr. Ein solches Verhalten hatten die Forscher nicht erwartet.


Abb.: Rastertransmissionselektronenmikroskopische Aufnahme von ikosaedrischen...
Abb.: Rastertransmissionselektronenmikroskopische Aufnahme von ikosaedrischen Käfigclustern (goldene Bereiche) an einer Korngrenze in Titan mit atomarer Auflösung. Die hellen goldenen Atomsäulen innerhalb der Käfige bestehen aus Eisenatomen.
Quelle: V. Devulapalli et al. (2024) / AAAS

Die meisten technischen Materialien haben eine polykristalline Struktur: Sie bestehen aus verschiedenen Kristallen, in denen die Atome in einem regelmäßigen Gitter angeordnet sind. Diese Kristalle sind nicht überall gleich ausgerichtet, und die Grenzflächen, die sie voneinander trennen, werden als Korngrenzen bezeichnet. „Diese Korngrenzen haben einen enormen Einfluss auf die Haltbarkeit und die Gesamteigenschaften eines Materials“, sagt Vivek Devulapalli, der die mikroskopischen Arbeiten der Studie durchgeführt hat. Er fügt hinzu: „Aber wir verstehen nur sehr begrenzt, was passiert, wenn sich Elemente an den Korngrenzen anlagern, und wie sie die Eigenschaften eines Materials beeinflussen.“

Der Schlüssel zum Erfolg war die Beobachtung und Modellierung der Strukturen mit atomarer Auflösung. Die Forscher setzten ihre Ergebnisse aus der Rastertransmissionselektronenmikroskopie mit atomarer Auflösung mit fortschrittlichen Computersimulationen in Beziehung. Ein neuer Algorithmus zur Vorhersage der Korngrenzstruktur konnte die experimentell beobachteten Strukturen erzeugen und ermöglicht somit die Untersuchung ihrer Struktur. „Unsere Simulationen zeigen, dass wir für unterschiedliche Eisengehalte immer die Käfigstrukturen als die zugrundeliegenden Bausteine der verschiedenen Korngrenzphasen finden. Je höher der Eisengehalt an der Korngrenze ist, desto mehr ikosaedrische Einheiten treten auf und agglomerieren schließlich“, erklärt Enze Chen von der Stanford University. 

Ein Ikosaeder ist ein geometrisches Objekt mit zwölf Ecken oder Scheitelpunkten, die in diesem Fall von Atomen besetzt sind, und zwanzig Ebenen. „Wir haben mehr als fünf verschiedene Strukturen oder Korngrenzphasen derselben Grenzfläche identifiziert, die alle aus unterschiedlichen Anordnungen der gleichen ikosaedrischen Käfigeinheiten bestehen“, fügt Timofey Frolov hinzu, der die Berechnungen leitete.

Bei näherer Betrachtung der Käfigstrukturen zeigte sich, dass die Atome eine ikosaedrische Anordnung einnehmen, bei der sich die Eisenatome im Zentrum des Ikosaeders befinden und die Titanatome seine Ecken besetzen. „Die ikosaedrischen Käfige ermöglichen eine dichte Packung von Eisenatomen, und da sie aperiodische Cluster bilden können, kann mehr als die zwei- bis dreifache Menge an Eisen an der Korngrenze untergebracht werden“, erklärt Vivek Devulapalli. „Es sieht so aus, als ob Eisen in quasikristallinen Korngrenzphasen gefangen ist“, fügt Chen hinzu. „Dies wird auf die Eigenschaften der ikosaedrischen Käfige zurückgeführt“, sagt Liebscher, „und wir müssen nun Wege finden, um zu untersuchen, wie sie die Grenzflächeneigenschaften und damit das Materialverhalten beeinflussen.“

Das Verständnis und die Kontrolle der Bildung ikosaedrischer Korngrenzphasen mit unterschiedlichen Strukturen und Eigenschaften kann möglicherweise dazu genutzt werden, die Eigenschaften von Werkstoffen selbst maßzuschneidern. Die Forscher wollen nun systematisch untersuchen, wie diese neuartigen Korngrenzzustände genutzt werden können, um das Materialverhalten zu beeinflussen, eine bestimmte Materialfunktionalität einzustellen und Materialien widerstandsfähiger gegen Degradationsprozesse zu machen.

RUB / DE

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen