Spatelförmige Plättchen an ihren Pfoten erlauben es Geckos, an der Decke zu laufen (vgl. S. 37, Foto: Kellar Autumn ©2010).
Physik Journal 1 / 2015
Grußwort
Inhaltsverzeichnis
Aktuell
Leserbriefe
Keine eindeutige Situation
Zu „Das Geheimnis der Dunklen Materie“ von Rafael Lang, November 2014, S. 35; mit Erwiderung von Rafael Lang
Ungenannte Disziplin
Zu „Ultraschall im Rohr“ von Michael Vogel und „Mit Sicherheit“ von Maike Pfalz, Oktober 2014, S. 16 bzw. 25
High-Tech
Im Brennpunkt
Erreger auf der Überholspur
Ein iterativer Skalierungsansatz ermöglicht neue Einsichten in die Ausbreitung einer vorteilhaften Mutation oder einer Infektionskrankheit.
Forum
Exzellente Initiative?
Kürzlich lief für die beiden Cluster Quest und CFN die Förderung durch die Exzellenzinitiative aus. Welche Veränderungen hat diese Initiative gebracht, und wie geht es nun weiter?
Eine riesige Baugrube prägt derzeit die Callinstraße in der Hannoveraner Nordstadt. Seit 2013 graben die Bagger hier das Fundament für das Hannoversche Institut für Technologie (HITec) aus, dessen Herzstück ein 20 Meter hoher Turm für Experimente in der Schwerelosigkeit sein wird. 2011 wurde der 30 Millionen Euro teure Forschungsbau nach Empfehlung des Wissenschaftsrats in die gemeinsame Förderung von Bund und Ländern aufgenommen – eine direkte Folge der Aktivitäten, die der Exzellenzcluster Quest in Hannover ausgelöst hat.
Doch überraschend kam 2012 nach nur einer Förderperiode für Quest das Aus – lange bevor im kommenden Jahr Physiker, Geodäten und Ingenieure in das neue Gebäude einziehen werden. Wie aber lässt sich ein Forschungsbau, der auf Jahrzehnte ausgelegt ist, dauerhaft mit Wissenschaftlern und modernen Geräten füllen, wenn eine millionenschwere Förderung wegbricht?
Insgesamt 4,6 Milliarden Euro haben Bund und Länder für die Exzellenzinitiative zwischen 2006 und 2017 zur Verfügung gestellt. Bei den zuletzt getroffenen Entscheidungen im Juni 2012 wurden 11 Zukunftskonzepte, 45 Graduiertenschulen und 43 Exzellenzcluster ausgewählt. Für einige wenige Projekte kam dabei das Aus nach nur einer Förderperiode, nämlich für die Zukunftskonzepte des Karlsruher Instituts für Technologie (KIT), der Universität Göttingen und der Universität Freiburg sowie für fünf Graduiertenschulen und sechs Exzellenzcluster. In der Physik war neben Quest auch das Centrum für Funktionelle Nanostrukturen (CFN) in Karlsruhe betroffen.
Ende Oktober endete nun auch die Auslauffinanzierung, die alle nicht verlängerten Einrichtungen zwei Jahre lang erhalten haben. Viel ist an den geförderten Standorten passiert, Professoren wurden berufen, Nachwuchsgruppen aufgebaut, die Zusammenarbeit zwischen den Fächern sowie zwischen universitärer und außeruniversitärer Forschung wurde gestärkt. Neue Strukturen der Zusammenarbeit sind entstanden. Doch wie geht es weiter ohne das Geld aus der Exzellenzinitiative? Aus welchen Mitteln sollen die neuen Professuren und Arbeitsgruppen bezahlt werden? Diese Fragen haben sich die Mitarbeiterinnen und Mitarbeiter der Karlsruher und Hannoveraner Cluster spätestens seit Juni 2012 gestellt und individuelle Lösungen gefunden. ...
Überblick
Der Dreh mit dem Licht
Optische Spiralwellen und ihre Anwendungen
Licht mit Bahndrehimpuls lässt sich veranschaulichen mit einem Bündel Spaghetti, das in der Mitte zusammen gedrückt und verdrillt wird. Solche optischen Spiralwellen haben vielfältige Anwendungen, beispielsweise können sie dazu dienen, Partikel mit der optischen Pinzette gezielt zu sortieren. In der Mikroskopie lässt sich mit ihnen eine Kantenverstärkung erzielen, und in der Quantenkryptographie ermöglichen Spiralwellen es, mehr Informationen zu verschränken.
Licht besitzt Energie, deren technische Nutzung mittels Solarheizung oder Photovoltaik allgegenwärtig ist. Und obwohl Licht kein Strahl massebehafteter Teilchen ist, besitzt es doch Impuls. Der Strahlungsdruck, der durch Impulsübertrag auf ein Objekt bei Reflexion oder Absorption entsteht, ist zwar sehr klein (für Sonnenlicht in Erdentfernung beträgt er einige µPa), aber dennoch unübersehbar für einige interessante Phänomene: Der Strahlungsdruck des Sonnenlichts trägt beispielsweise wesentlich dazu bei, dass Kometen einen Schweif haben, der immer von der Sonne weg zeigt. Möglicherweise lässt sich dies in einem Sonnensegelantrieb für Raumsonden ausnutzen.
Wie sieht es mit dem Drehimpuls des Lichts aus? Mikroskopisch ist Licht durch Photonen zu beschreiben, mit einem Energiequantum ω und einem Impuls k. Photonen sind Spin-1-Teilchen und besitzen daher einen intrinsischen Drehimpuls. Dieser „Spin“ macht sich makroskopisch als die Polarisation bemerkbar: Dass Licht rechts- bzw. linkszirkular oder linear polarisiert sein kann, lässt sich als Ensemble-Mittelwert über eine Verteilung von Photonen verstehen, die sich jeweils in einem Polarisationszustand mit Helizität ±1 oder in Superpositionen davon befinden können.
Aber kann Licht auch Drehimpuls im Sinne des Bahndrehimpulses eines Teilchens besitzen? Betrachten wir zur Beantwortung dieser Frage erst einmal die allgemeine Definition des Drehimpulses als das Vektorprodukt des Ortsvektors und des Impulses, L = r × p. Stellen wir uns zur Veranschaulichung eine Tür vor, in deren Mittelpunkt ein kleiner Spiegel befestigt ist, der einen Lichtstrahl reflektieren und dabei Impuls auf die Tür übertragen kann. Bezogen auf einen Punkt auf der Drehachse durch die Türangeln besitzt der Lichtstrahl definitionsgemäß einen Drehimpuls. Da sich sein Vorzeichen bei der Reflexion ändert, lässt sich ein Drehmoment ausüben, das proportional zur zeitlichen Änderung des Drehimpulses ist, also ΔL/τ. Bei einem Abstand r des Spiegels zur Drehachse und Nph reflektierten Photonen in der Zeit τ führt dies zu einem Drehmoment von r Nph 2k/τ. Leider lässt sich damit nicht viel anstellen: Um eine 10 kg schwere Tür mit einer winzigen Tangentialbeschleunigung von 1 µm/s2 um ihre Angeln zu rotieren, bräuchte man Millionen von 1 mW-Laserpointer, um den nötigen Impulsübertrag aufzubringen. Als Türöffner in diesem Sinne eignet sich Licht also kaum. Eher würde das Licht ein Loch in die Tür brennen. Für mikroskopisch kleine Partikel können derartige Kräfte und Drehmomente trotzdem eine Rolle spielen. ...
Vom Photolack zum Gecko
Wie intermolekulare Kräfte Adhäsion, Adsorption und Benetzung beeinflussen.
Beobachtet man Geckos, die über Wände und Decken jagen, fragt man sich, welche Kräfte sie halten. Verantwortlich für dieses Kunststück sind elektromagnetische Kräfte zwischen Molekülen, insbesondere van der Waals-Kräfte zwischen fluktuierenden Dipolen. Diese entscheiden auch darüber, ob eine Beschichtung auf einem Substrat hält, sei es ein Photolack auf einem Siliziumwafer oder ein bakterienhaltiger Biofilm auf einer Türklinke oder einem Zahn.
Beschichtungen spielen bei vielen industriellen Anwendungen eine wichtige Rolle, z. B. in der Lack- oder der Halbleiterindustrie. Eine zentrale Aufgabe ist hierbei, die Stabilität der Beschichtungen zu optimieren. Ein einfaches Beispiel ist ein Photolack auf einem einkristallinen Siliziumwafer. Was hält die Flüssigkeit auf dem Wafer und warum perlt sie manchmal ab wie Honig von einem Butterbrot? Bevor wir diese Frage beantworten können, wenden wir uns zunächst den Kräften zu, die zwischen Lack und Wafer wirken. Mikroskopisch gesehen sind das – neben der sehr kurzreichweitigen Abstoßung aufgrund des Pauli-Prinzips – Kräfte zwischen Atomen oder Molekülen, die durch den Austausch von Photonen zustande kommen und unter dem Oberbegriff intermolekulare Wechselwirkungen zusammengefasst werden [1, 2]. Dazu zählt nicht nur die Coulomb-Wechselwirkung zwischen Ladungen: Bereits vor rund 140 Jahren stellte Johannes Diderik van der Waals eine Theorie zur Anziehungskraft zwischen neutralen Atomen vor, um reale Gase zu beschreiben. Diese van der Waals-Wechselwirkung (vdW) wirkt zwischen permanenten oder induzierten Dipolen. Unabhängig von der Art der Dipole fällt die Kraft wie 1/d6 mit dem Abstand d der Dipole ab. Daher wird sie häufig als kurzreichweitig angesehen und vernachlässigt.
Da aber bei jedem Molekül oder Atom entweder ein Dipolmoment existiert oder sich ein solches induzieren lässt, sind die vdW-Wechselwirkungen de facto omnipräsent. Dadurch wirken sie nicht nur zwischen isolierten Molekülen, sondern auch zwischen allen Molekülen und Atomen, aus denen kondensierte meso- oder makroskopische Objekte bestehen. Hugo C. Hamaker, Hendrik Casimir und Jewgeni Lifshitz haben gezeigt, dass die Wechselwirkung zwischen zwei solchen Objekten langreichweitiger wird – wobei die Geometrie der Objekte den genauen Exponenten bestimmt (Infokasten „Van der Waals-Wechselwirkungen“). Dadurch werden diese Wechselwirkungen relevant für Labor und Alltag. ...