Der Planck-Satellit liefert zwei Jahre nach seinem Start erste Messergebnisse auf dem Weg zu einem noch genaueren Bild des kosmischen Mikrowellenhintergrundes. (Bild: ESA/LFI & HFI Consortia, vgl. S. 20)

Der Planck-Satellit liefert zwei Jahre nach seinem Start erste Messergebnisse auf dem Weg zu einem noch genaueren Bild des kosmischen Mikrowellenhintergrundes. (Bild: ESA/LFI & HFI Consortia, vgl. S. 20)
Interview mit Eberhard Umbach
Kommt die Isotopenfabrik früher? Starker Hochtechnologieexport Abschied vom Tevatron
Gut zwei Jahre nach dem Start des Planck-Satelliten liegen nun erste Ergebnisse vor, welche die Vordergrundstrahlung genau analysieren.
Auf der Suche nach neuen Materialien für die Spintronik zeigt der so genannte Rashba-Effekt immer wieder neue Gesichter.
Die Inflationstheorie erklärt erfolgreich die großräumigen Eigenschaften unseres Universums.
Die Tatsache, dass unser Universum so gleichförmig ist, lässt sich damit erklären, dass es sich kurz nach seiner Entstehung innerhalb eines winzigen Zeitraums gewaltig ausdehnte. Anders als in der klassischen Urknalltheorie bildet diese „Inflationsphase“ den Auftakt zum „heißen Urknall“. Der „Fingerabdruck“ der Inflation könnte sich in den Fluktuationen des kosmischen Mikrowellenhintergrunds verbergen, die sich dank neuer Satellitenmissionen immer präziser messen lassen.
Im ganz großen Maßstab betrachtet ist unser Universum ein sehr eintöniger Ort. Blickt man nachts in eine beliebige Richtung des Weltalls, so sieht man, abgesehen von lokalen Strukturen wie der Milchstraße und einer Handvoll naher Galaxien, überall praktisch das Gleiche. Zählt man beispielsweise die Galaxien pro Winkelelement in einem festen Abstand von der Erde, findet man bei ausreichend großen Abständen und Winkelelementen Werte, die nur geringfügig vom jeweiligen Mittelwert abweichen. Mit anderen Worten, das Universum erscheint isotrop, es hat keine ausgezeichnete Richtung. Ausgehend von der überaus plausiblen (und bescheidenen) Annahme, dass sich unsere Milchstraße nicht zufällig im Zentrum des Universums befindet, sollten Astronomen in allen anderen Galaxien ebenfalls ein isotropes Universum beobachten. In diesem Fall ist das Universum zusätzlich noch homogen, besitzt also keine ausgezeichneten Punkte. Bei alledem beschränken wir uns natürlich nur auf den sichtbaren Bereich des Universums − es gibt zunächst keine Gründe für die Annahme, dass diese Eigenschaften bis in unendliche räumliche Entfernungen gelten sollten.
Auch die Tatsache, dass sich das Universum mit der Zeit immer weiter ausdehnt, ändert nichts an seiner Gleichförmigkeit. Die von Edwin Hubble entdeckte kosmische Expansion äußert sich darin, dass sich der Abstand aller Galaxien im Mittel mit der gleichen Rate vergrößert. Bei kleinen Abständen überwiegt zwar die gegenseitige Anziehungskraft und es bilden sich gebundene Strukturen wie Galaxiengruppen und -haufen, aber über große Abstände gemittelt bleibt die Verteilung der Materie im Universum homogen und isotrop....
Hundert Jahre nach der Entdeckung des Atomkerns ist die Beschreibung dieses komplexen Vielteilchen-Systems immer noch eine Herausforderung für die Theorie.
Atome sind überwiegend „leer“, denn nur eines von tausenden α-Teilchen fliegt nicht auf geradem Weg durch eine dünne Metallfolie. Dieses überraschende experimentelle Ergebnis erklärte Ernest Rutherford 1911 mit der Vorstellung eines punktförmigen Atomkerns und seiner berühmten Streuformel. Nach dieser Geburtsstunde hat sich die Kernphysik rasch zu einer lebendigen Teildisziplin der Physik entwickelt, die derzeit – dank neuer Beschleuniger und Experimente – eine Renaissance erlebt.
Nachdem Henry Becquerel im Februar 1896 die Radioaktivität entdeckt hatte, zeigte sich, dass die dabei auftretenden Strahlungsenergien weit höher sind als bei den bereits zuvor untersuchten Spektrallinien der Atome und Moleküle. Daher lag es nahe, dass die Radioaktivität ihren Ursprung im „Inneren“ der Atome hat – wie dieses jedoch aussieht, war völlig unklar. Joseph John Thomson, der 1897 erkannt hatte, dass β-Strahlen aus Elektronen bestehen, entwickelte daher ein Modell, bei dem das Atom aus einem positiv geladenen „Pudding“ und darin befindlichen negativen Elektronen als „Rosinen“ bestand („Plum-Pudding“-Modell). Ebenfalls 1897 hatte der in Neuseeland geborene Ernest Rutherford (Abb. 1) gezeigt, dass sich die Radioaktivität aus drei verschiedenen Bestandteilen zusammensetzt: den α-, β- und γ-Strahlen. Hierfür erhielt er 1908 den Nobelpreis für Chemie. Im gleichen Jahr schlug er seinem Mitarbeiter Hans Geiger vor, die Streuung von α-Teilchen an Metallfolien zu untersuchen.
Rutherford hatte, bevor er 1907 nach Manchester kam, bereits mit α-Teilchen (4He-Kernen) aus dem Zerfall von Radon experimentiert. In dem Experiment von Geiger war das Radon in einem konischen Glasröhrchen eingeschlossen, das die α-Teilchen durch ein Glimmerfenster verlassen konnten (Abb. 2). Als Nachweis der an einer Metallfolie gestreuten Teilchen diente ein Zinksulfidschirm, der beim Auftreffen eines α-Teilchens sehr schwach aufleuchtete. Geiger beobachtete die Lichtblitze durch ein Mikroskop geringer Auflösung. Dies war so ermüdend, dass er den Studenten Ernest Marsden um Unterstützung bat. Die beiden fanden heraus, dass die meisten α-Teilchen ohne große Ablenkung durch die Metallfolie hindurch gingen und nur ein Teilchen von 8000 um mehr als 90 Grad abgelenkt wurde. Geiger und Marsden veröffentlichten ihr Resultat 1909 [1]. ...
485. WE-Heraeus Seminar
481. WE-Heraeus-Seminar
486. WE-Heraeus-Seminar
Internationale WE-Heraeus-Sommerschule
488. WE-Heraeus-Seminar