Beim nichtlinearen Compton-Effekt deuten sich neuartige Energietransfer-Mechanismen an. (Bild: Joel Brehm, University of Nebraska-Lincoln 2015, Board of Regents, vgl. S. 18)
Physik Journal 1 / 2016
Grußwort
Inhaltsverzeichnis
Aktuell
LISA auf dem rechten Pfad
LISA Pathfinder ist erfolgreich gestartet und soll die Technologie für den Nachweis von Gravitationswellen im All testen.
High-Tech
Im Brennpunkt
Der doppelte Compton sieht rot
Beim nichtlinearen Compton-Effekt deuten sich neuartige Energietransfer-Mechanismen an.
Kuppeln mit Kolloiden
Auf mikroskopischer Skala ist es gelungen, eine Kupplung aus Kolloidteilchen aufzubauen.
Super im Kollektiv
Wenn sich kollektive Anregungen in Quantenfilmen überlagern, entsteht eine neue infrarote Lichtquelle.
Forum
Mit Physik zum perfekten Wurf
Interview mit Holger Geschwindner
Der 70-jährige Holger Geschwindner hat nicht nur in der deutschen Basketball-Nationalmannschaft gespielt, sondern auch Mathematik und Physik studiert. Seine Physikkenntnisse hat er eingesetzt, um den perfekten Wurf zu berechnen. Davon profitiert seit 1995 NBA-Spieler Dirk Nowitzki, dessen Trainer und Mentor Geschwindner ist.
Wie haben Sie Dirk Nowitzki eigentlich entdeckt?
Ich habe damals in der Altherrenmannschaft gespielt. Vor uns hat die Jugend trainiert, und da war ein langer dünner Junge dabei, der witzigerweise schon alles gemacht hat, was ein guter Basketballspieler können muss. Aber ihm fehlte noch die richtige Technik. Nach dem Spiel habe ich ihm angeboten, ihm dieses Handwerkszeug beizubringen. So hat alles angefangen.
Gelernt haben Sie aber etwas anderes...
Genau. Ich habe Mathematik und Physik studiert.
Wie kamen Sie auf diese Fächer?
Mir sind Mathe und Physik in der Schule sehr leicht gefallen. An der Tafel konnte ich immer schnell eine Lösung aus der Hosentasche zaubern. Ich war ein fauler Schüler und mehr auf den Sport konzentriert, da kamen mir Fächer gelegen, in denen es ums Verstehen ging, nicht ums Auswendiglernen. Rückblickend war das dumm, ich hätte viel weiter kommen können, wenn ich mich nur richtig reingekniet hätte.
Parallel zum Studium haben Sie intensiv Basketball gespielt...
In Deutschland war Basketball zu der Zeit reiner Studentensport, den wir aus Spaß betrieben haben. Andere Spieler sind Lehrer geworden, Mediziner oder Zahnärzte. In unserer Generation war von vornherein klar, dass man seinen Lebensunterhalt nicht mit dem Balldribbeln verdienen kann. ...
Überblick
Alles im Fluss
Der supraleitende Elektronenbeschleuniger ELBE erzeugt als Sekundärstrahlung auch Infrarot- und THz-Photonen, Positronen, Neutronen und MeV-Röntgenquanten.
Knapp zehn Kilometer vom Flusslauf der Elbe entfernt liegt das Helmholtz-Zentrum Dresden-Rossendorf. Dort befindet sich ELBE – der Elektronen-Linearbeschleuniger für Strahlen mit hoher Brillanz und niedriger Emittanz. Diese Quelle für Sekundärstrahlung, sowohl für elektromagnetische als auch Teilchenstrahlen, ist in den letzten drei Jahren signifikant ausgebaut worden und bietet nun neue, verbesserte Experimentiermöglichkeiten.
Um Struktur und Eigenschaften von Materie im weitesten Sinne zu untersuchen, sind geeignete Sonden nötig: Das können elektromagnetische Wellen bzw. Photonen sein, vom niederfrequenten, langwelligen Terahertz-Bereich bis zu kurzwelligen Röntgenquanten, aber auch Teilchen wie Neutronen oder Positronen. Je nach Größe der relevanten Strukturen und Natur der gesuchten Eigenschaften eignet sich die eine Sonde besser als die andere. Mit den beschleunigten Elektronenpaketen bei ELBE lässt sich eine breite Palette an Sekundärstrahlen erzeugen, um damit z. B. kondensierte Materie zu untersuchen [1] (Abb. 1). Besondere Merkmale von ELBE sind die supraleitenden Beschleunigerstrukturen, die sehr hohe Ströme und damit sehr hohe Teilchenflüsse ermöglichen – unabhängig davon, ob es sich um Photonen, Positronen oder Neutronen handelt. All dies macht den Beschleuniger ELBE weltweit einzigartig und vereint zugleich unterschiedliche Wissenschaftsgebiete mit erheblichen Synergieeffekten.
Mit supraleitenden Hochfrequenzresonatoren lassen sich hohe elektrische Felder von rund 30 MV/m im kontinuierlichen Betrieb erzeugen. Solche Resonatoren, ursprünglich an DESY für das Elektronen-Positronen-Colliderprojekt TESLA entwickelt, kommen an ELBE zum Einsatz. Die Resonanzfrequenz von 1,3 GHz sorgt für eine extrem hohe Güte von über 1010. Ein solcher Resonator arbeitet nahezu verlustfrei und ist in der Lage, ohne nennenswerten Wärmeeintrag in das Resonatormaterial dauerhaft ein hohes Feld zu erzeugen und Elektronenpakete kontinuierlich zu beschleunigen. Diese Betriebsweise heißt „quasi-continuous wave-mode“ (cw). ...
Mit Schwung durch die Hutkrempe
Die Higgs-Mode im „Mexican Hat“-Potential der freien Energie erklärt auch kollektive Anregungen der Supraleitung.
Supraleitung weist viele Analogien zur Hochenergiephysik auf. Auch die Idee, für die Peter Higgs und François Englert 2013 den Physik-Nobelpreis erhielten, hat ihren Ursprung in der Festkörperphysik. In einem „Mexican Hat“-Potential gibt es eine elementare Anregung entlang des Radius der Hutkrempe: die massebehaftete Higgs-Mode. Neue Experimente an Supraleitern erlauben es, die Higgs-Mode direkt zu beobachten, sowohl im Gleichgewicht als auch im Nicht-Gleichgewicht, nachdem der Supraleiter mit einem kurzen Laserpuls angeregt wurde.
Im Jahr 1911 beobachtete Heike Kamerlingh Onnes, dass der Widerstand von Quecksilber unterhalb der Sprungtemperatur von Tc = 4,2 K verschwindet, und entdeckte damit das Phänomen der Supraleitung. Um Supraleitung zu verstehen, ist allerdings der damit verknüpfte, perfekte Diamagnetismus wichtiger. Zwanzig Jahre später gelang es Walther Meißner und Robert Ochsenfeld, dieses Phänomen nachzuweisen, das zum Meißner-Ochsenfeld-Effekt führt: Magnetfelder dringen nur exponentiell gedämpft in den Supraleiter ein, falls seine Temperatur unterhalb von Tc liegt. Die klassische London-Theorie beschreibt beide Phänomene. Manche Experimente sind aber nur mittels quantenmechanischer Modelle zu erklären.
Die Theorie von Bardeen, Cooper und Schrieffer erklärte 1957 alle Beobachtungen, die bis dahin an Supraleitern vorlagen. Der Meißner-Ochsenfeld-Effekt beruht demnach auf einem neuen Quantenzustand, bei dem alle Elektronen die gleiche Energie und den gleichen Wellenvektor besitzen. Aufgrund des Pauli-Prinzips ist dies nur für Bosonen möglich, sodass sich jeweils zwei Elektronen zu Cooper-Paaren zusammenschließen müssen. Die BCS-Theorie sagt voraus, dass sich in der Zustandsdichte unterhalb Tc eine Ener-gielücke bildet, die gerade dem Doppelten des Ordnungsparameters der Supraleitung entspricht (Abb. 1): Anregungen im Intervall [–, ] sind „verboten“. Um Elektronen im Supraleiter anzuregen, muss man diese Energielücke überwinden, die für einen BCS-Supraleiter 2 = 3,53 kBTc beträgt. Bei einem Supraleiter mit Tc = 12 K ist dies mit elektromagnetischer Strahlung der Frequenz 1 THz bzw. der Wellenzahl 30 cm–1 möglich. Daher eignet sich die Terahertz-Spektroskopie dazu, die Dynamik der Elektronen im Supraleiter zu untersuchen. ...
Physik im Alltag
Menschen
DPG
„Ihr nennt es Spielen, wir nennen es Experimentieren“
Physik für Flüchtlinge – über 600 freiwillige DPG-Mitglieder helfen mit!