Der humanoide Roboter Nao basiert auf IBMs künstlicher Intelligenz Watson und arbeitet beispielsweise als Concierge. (Bild: SoftBank Robotics, vgl. S. 24)
Physik Journal 4 / 2017
Meinung
Inhaltsverzeichnis
Aktuell
High-Tech
Im Brennpunkt
Von der Atomuhr zur Kernuhr
Kürzlich sind die ersten direkten Messungen von Eigenschaften des Isomers von 229Th gelungen.
Metall oder nicht Metall?
Wasserstoff reflektiert Licht bei einem Druck von 5 Mbar – der eindeutige Nachweis einer metallischen Phase ist das aber noch nicht.
Bildung - Beruf
Die Kunst der Intelligenz
Der Bereich künstliche Intelligenz und Robotik bietet auch Physikerinnen und Physikern vielfältige Jobmöglichkeiten.
Präzise führt der zweiarmige Roboter im Reinraum die Pipette in das winzige Reaktionsgefäß und nimmt die Flüssigkeit darin auf. Nach einem genau festgelegten Ablauf schwenkt er seinen anderen Arm zur Seite und greift eine Petrischale, in die er die Flüssigkeit füllt und rührt. Obwohl die Bewegungen ungelenk aussehen, geht nichts kaputt, nichts wird verschüttet, nie greift der Roboter daneben. Mit einer Präzision von einem Zehntel Millimeter führt er zielsicher den einprogrammierten Arbeitsablauf aus. Ob er dabei mit teuren oder giftigen Substanzen hantiert, die z. B. zur Herstellung von Krebsmedikamenten notwendig sind, spielt keine Rolle.
Heutzutage sind Roboter in der Industrie wichtige Helfer – sei es zum Sortieren, Verpacken, Kleben, Schweißen oder als ein Helfer in der Automobilherstellung, der schwere Einzelteile hebt und perfekt positioniert, damit der Mensch diese Lasten nicht mehr stemmen muss. Das japanische Unternehmen Yaskawa ist mit weltweit rund 15 000 Mitarbeitern einer der führenden Hersteller von Antriebstechnologie, Automation und Industrierobotern. Diese sind unter dem Label „Motoman“ bekannt und zählen weltweit zu den besten in puncto Bahn- und Wiederholgenauigkeit. Zudem können mehrere Roboter perfekt synchron arbeiten, indem sie parallel miteinander kommunizieren. Auch in Deutschland ist das Unternehmen tätig mit der Zentrale in Eschborn und einem Standort für Anlagentechnik und Robotik in Allershausen nördlich von München. Leiter dieses Standorts, an dem hochkomplexe Anlagen bis hin zu kompletten Fertigungsstraßen gebaut werden, ist seit dem letzten Jahr der Physiker Otwin Kleinschmidt.
Seit 2012 arbeitet er bei Yaskawa. Gestartet ist er dort als Leiter des Projektmanagements – eine Aufgabe, die nach dem Physikstudium nicht unbedingt nahe lag. „Nach dem Abschluss habe ich mich bewusst für den Wechsel in die Industrie entschieden. Alles weitere hat sich dann sukzessive entwickelt“, erinnert sich Otwin Kleinschmidt. Bei verschiedenen Arbeitgebern – zunächst in der Oberflächenanalytik, später in der Halbleiterfertigung – hat er im Marketing, Vertrieb und im Projektmanagement gearbeitet. „In all diesen Feldern hatte ich mit der Technologie zwar nicht direkt zu tun, aber ohne technisches Verständnis hätte ich keine komplexen Anlagen verkaufen können“, stellt er fest.
Überblick
Einseitige Bereicherung
In photonischen Nanostrukturen hängt die Wechselwirkung von Licht mit Materie überraschend von der Propagationsrichtung des Lichts ab.
Viele Anwendungen basieren darauf, Licht mittels stark fokussierender Optik oder photonischer Nanostrukturen auf der Skala seiner Wellenlänge zu kontrollieren und zu manipulieren. Durch diese starke räumliche Eingrenzung koppelt aber im Allgemeinen die lokale Polarisation an die Ausbreitungsrichtung des Lichts. Dadurch kann die Emission, Streuung und Absorption von Photonen von deren Propagationsrichtung abhängen. Die Quantenoptik hat eine solche richtungsabhängige Licht-Materie-Wechselwirkung bislang nicht berücksichtigt. So ist erst vor Kurzem das Forschungsgebiet der chiralen Quantenoptik entstanden.
Die Quantenoptik beschäftigt sich mit der Wechselwirkung von Licht und Materie auf der mikroskopischen Ebene. Licht wird dabei in Form von Photonen durch einzelne Quantenemitter wie Atome, Moleküle, Farbzentren oder Quantenpunkte emittiert und absorbiert. Diese elementaren Wechselwirkungsprozesse sind die Basis vieler Phänomene und Anwendungen wie der Photosynthese, visuellen Wahrnehmung, Photovoltaik, digitalen Bildsensorik sowie optischen (Quanten-)Kommunikation und Informationsverarbeitung.
Neben der grundlegenden Beschreibung der Prozesse ist es ein wichtiges Ziel der Quantenoptik, die Dynamik und Effizienz der Photonenemission und -absorption zu kontrollieren bzw. zu maximieren. Als vielseitiges experimentelles Werkzeug sind hierbei in jüngster Zeit nanophotonische Strukturen ins Zentrum der Aufmerksamkeit gerückt. Dabei handelt es sich um nanostrukturierte dielektrische Wellenleiter und Resonatoren, die es ermöglichen, das Licht sehr effizient an Quantenemitter zu koppeln. Entscheidend ist hierbei, dass die Querschnittsfläche der geführten Lichtmode vergleichbar wird mit dem Absorptionsquerschnitt des Emitters, wobei letzterer etwa dem Quadrat der Lichtwellenlänge entspricht. Solche räumlich stark eingegrenzten Lichtmoden verhalten sich jedoch grundsätzlich anders, als man es von paraxialen Lichtfeldern gewohnt ist, die zum Beispiel bei kollimierten Laserstrahlen vorliegen. Insbesondere schwingt das elektromagnetische Feld im räumlich eingegrenzten Fall nicht nur transversal zu seiner Ausbreitungsrichtung, sondern besitzt auch eine longitudinale Polarisationskomponente...
Magnetismus im Molekülmaßstab
Der Quantenmagnetismus mesoskopischer Systeme eröffnet neue Fragen und Anwendungen.
Ob kleinste Datenspeicher, Qubits, Kühlmittel oder medizinische Kontrastmittel – magnetische Moleküle versprechen vielfältige Anwendungen. Dies und die zugrundeliegenden quantenmechanischen Mechanismen machen den molekularen Magnetismus zu einem hochaktuellen Forschungsgebiet über die Fächergrenzen hinweg. So ist hier eine Zusammenarbeit zwischen Chemie und Physik unverzichtbar, denn je besser man die magneto-strukturellen Zusammenhänge versteht, desto zielgerichteter lassen sich neue Moleküle synthetisieren. Aber auch aus rein physikalischer Sicht bietet die Forschung an magnetischen Molekülen spannende Fragestellungen.
Die Entdeckung einer magnetischen Hysterese, die rein molekularen Ursprungs ist, gilt als Geburtsstunde des molekularen Magnetismus [1]. Dies gelang erstmals am Molekül mit der chemischen Formel Mn12O12CH3COO16H2O4 • 2CH3COOH • 4H2O. Der Übersichtlichkeit halber wird diese etwas sperrige Formel oft auf die magnetischen Bestandteile reduziert, in diesem Fall also Mn12. Mit der Hoffnung auf molekulare magnetische Speicherbits ist eine Euphorie verbunden, die dieses neue Forschungsgebiet antreibt. Im Gegensatz zur Physik ausgedehnter Festkörper, die Phasen und ihre Übergänge beschreibt, befasst sich der molekulare Magnetismus mit endlichen Systemen, deren Eigenschaften sich typischerweise aus dem Zusammenspiel von bis zu etwa 100 Konstituenten ergeben. Auch wenn die magnetischen Eigenschaften unterschiedlicher chemischer Verbindungen stark von den jeweiligen Details abhängen, gibt es trotzdem einige grundlegende Gemeinsamkeiten. Damit lassen sich Klassen von Molekülen charakterisieren und Anknüpfungspunkte zur Physik der ausgedehnten magnetischen Systeme herstellen.p>
Beim molekularen Magnetismus sind die Eigenschaften einzelner magnetischer Moleküle interessant. Doch anders als der Begriff suggeriert, werden die Moleküle als makroskopische Proben in Form von Kristallen, Kristalliten oder Lösungen untersucht. Oft sind die magnetischen Bestandteile der Moleküle durch das umgebende ausgedehnte chemische Gerüst (Liganden) weit genug voneinander entfernt, sodass die magnetischen Momente verschiedener Moleküle praktisch nicht miteinander wechselwirken. Dann geben die Messungen im thermodynamischen Gleichgewicht tatsächlich die Ensembleeigenschaften einzelner Moleküle wieder. Um auch die kleinsten Wechselwirkungen zwischen Molekülen auszuschließen, ist es weiterhin möglich, makroskopische Proben durch Mischung mit diamagnetischen Analoga zu verdünnen. Die Untersuchung von einzelnen, nicht wechselwirkenden Molekülen wurde inzwischen erfolgreich in Versuchen demonstriert, bei denen die Moleküle auf Substraten deponiert sind...