2D-Heterostrukturen mit designten Eigenschaften
Organische supramolekulare Gitter auf Graphen bauen kontrollierbare 1D-periodische Potentiale auf.
Forscher der Universität Straßburg haben in Zusammenarbeit mit der belgischen Universität Mons, dem Max-Planck-Institut für Polymerforschung und der Technischen Universität Dresden eine neuartige supramolekulare Strategie entwickelt, mit deren Hilfe sich einstellbare 1D-periodische Potenziale zur Selbstorganisation von organischen ad hoc-Bausteinen auf Graphen realisieren lassen. Diese öffnen den Weg zur Umsetzung hybrider organisch-anorganischer Mehrschichtmaterialien mit einzigartigen elektronischen und optischen Eigenschaften.
Abb.: Berechnetes differentielles elektrisches Potential, induziert durch ein supramolekulares Gitter von MBB-2 auf Graphen. (Bild: Lohe)
Vertikale Stapel unterschiedlicher zweidimensionaler Kristalle wie Graphen oder Bornitrid werden durch schwache Van der Waals-Kräfte zusammengehalten. Diese Van der Waals-Heterostrukturen können als vielseitige Plattform für die Untersuchung verschiedener Phänomene im Nanometerbereich verwendet werden. Insbesondere erzeugt die mechanische Überlagerung der 2D-Kristalle 2D-periodische Potentiale, die dem System unkonventionelle physikalische und chemische Eigenschaften verleihen. Nun haben die Forscher einen supramolekularen Ansatz angewandt, um selbstorganisierende organische Molekülgitter mit einer kontrollierten Geometrie und atomarer Präzision auf Graphen zu bilden, was 1D-periodische Potentiale in den resultierenden organisch-anorganischen Hybrid-Heterostrukturen hervorruft.
Zu diesem Zweck wurden molekulare Bausteine sorgfältig entworfen und synthetisiert. Diese sind einerseits mit einem langen aliphatischen Schwanz ausgestattet, der die Selbstorganisation und die Periodizität des Potentials steuert, außerdem besitzen sie eine photoreaktive Diazirinkopfgruppe, deren Dipolmoment das Oberflächenpotential des darunter liegenden Graphenblättchens moduliert. Bei Bestrahlung mit ultraviolettem Licht vor der Abscheidung auf Graphen wird die Diazirineinheit gespalten und eine reaktive Carben-Spezies gebildet. Letztere ist anfällig für die Reaktion mit Lösungsmittelmolekülen, was zu einer Mischung von neuen Verbindungen mit unterschiedlichen Funktionalitäten führt.
Mit einem Rastertunnelmikroskop wurde die nanoskalierte Anordnung der supramolekularen Gitter auf Graphit- und Graphen-Oberflächen charakterisiert, welche die Periodizität und Geometrie der induzierten Potenziale bestimmt. Die Graphen-basierten Feldeffekt-Bauelemente wurden dann einer elektrischen Charakterisierung unterzogen, um den Effekt von unterschiedlichen organischen Schichten auf die elektrischen Eigenschaften des 2D Materials zu bestimmen. Computersimulationen erlauben es, die Wechselwirkung des molekularen Zusammenbaus mit Graphen zu begreifen. Weiterhin zeigte eine theoretische Analyse, dass die Effekte der Dotierung gänzlich auf die Anordnung der elektrischen Dipole in den Kopfgruppen zurückzuführen ist. Schließlich konnte aus einem supramolekularen Gitter, das nach UV-Bestrahlung des molekularen Bausteins in einem anderen Lösungsmittel hergestellt wurde, ein periodisches Potential mit der gleichen Geometrie, aber einer anderen Intensität erzeugt werden.
Auf diese Weise konnten die Forscher nachweisen, dass organische supramolekulare Gitter geeignet sind, um kontrollierbare 1D-periodische Potentiale auf der Oberfläche von Graphen zu erzeugen. Interessanterweise können Periodizität, Amplitude und Signatur der induzierten Potentiale vorprogrammiert und durch sorgfältiges molekulares Design angepasst werden. Dieser supramolekulare Bottom-up-Ansatz kann erweitert und auf andere anorganische 2D-Materialien wie Übergangsmetall-Dichalkogenide angewendet werden, die den Weg zu komplexeren mehrschichtigen Van-der-Waals-Heterostrukturen ebnen. Diese Erkenntnisse sind von großer Bedeutung für die Realisierung von organisch-anorganischen Hybridmaterialien mit kontrollierbaren strukturellen und elektronischen Eigenschaften mit beispiellosen elektrischen, magnetischen, piezoelektrischen und optischen Funktionalitäten.
TU Dresden / JOL