14.10.2013

Alles eine Frage der Haftung

Forscher entschlüsseln evolutionäres Erfolgsmodell mit 180.000 Bildern pro Sekunde und theoretischer Physik.

Haftung ist ein extrem wichtiger Effekt in der Natur. Geckos, Spinnen und Insekten können Wände hoch laufen, Pflanzen an ihnen empor ranken und Zellen auf Oberflächen haften. Im Laufe der Evolution haben sich bei vielen von ihnen pilzkopfförmige Füße und Organe mit optimalen Hafteigenschaften herausgebildet und weit verbreitet. Wissenschaftler um Lars Heepe an der Christian-Albrechts-Universität zu Kiel haben nun herausgefunden, warum diese spezielle Form die natürlichen Haftorgane so erfolgreich macht: Sie sorgt für eine gleichmäßige Spannungsverteilung zwischen Oberfläche und Haftelement.

Abb.: Rasterelektronenmikroskopische Aufnahmen von pilzkopfförmigen Haftstrukturen eines männlichen Blattkäfers (links) und des Gecko-Tapes (rechts), dessen Haftelemente denen des Käfers nachempfunden sind. (Bild: S. N. Gorb)

Neben der Rauheit der Oberflächen bestimmt insbesondere auch die Form beziehungsweise die Geometrie des Kontaktes maßgeblich, wie stark etwas haftet. In der Natur hat sich vor allem die pilzkopfförmige Haftgeometrie durchgesetzt. Sowohl auf der Nano-, Mikro- und Makroskala hat sie sich bei verschiedenen auf dem Land und im Wasser lebenden Organismen unabhängig voneinander entwickelt. Beispiele reichen dabei von der Haftung des Bakteriums Caulobacter crescentus an Oberflächen (Nano), über die pilzkopfförmigen Hafthaare einiger männlicher Blattkäfer (Mikro) bis hin zu Jungfernreben Parthenocissus (Makro). „Diese spezielle Kontaktgeometrie ist unabhängig voneinander entstanden. Das weist auf eine evolutionäre Anpassung der Organismen hin, die ihre Haftung immer weiter verbessert“, sagt Stanislav Gorb, Biologe am Zoologischen Institut der CAU.

Was aber sind eigentlich die mechanischen Vorteile dieser Pilzkopfform? Um dieser Frage auf den Grund zu gehen, nahm sich das interdisziplinäre Forscherteam, bestehend aus dem Physikingenieur Lars Heepe, dem Biophysiker Alexander Kovalev, dem theoretischen Physiker Alexander Filippov und dem Biologen Stanislav Gorb eine an der Universität Kiel in Zusammenarbeit mit der Gottlieb Binder GmbH entwickelte Haftfolie vor, das Gecko-Tape. Dessen mikroskopisch kleine Haftelemente sind den Füßen von Geckos und Blattkäfern nachempfunden, kleben sogar auf feuchten und rutschigen Untergründen, lassen sich immer wieder verwenden und rückstandsfrei wieder ablösen.

„Das Ablöseverhalten der einzelnen pilzkopfförmigen Mikrostrukturen haben wir uns, zeitlich und räumlich mit höchster Auflösung, unterm Mikroskop angesehen“, sagt Heepe. Dafür haben die Forscher den Ablöseprozess der individuellen Mikrostrukturen mit 180.000 Bildern pro Sekunde aufgenommen. „Dabei zeigte sich, dass der eigentliche Moment des Ablösens, also der Zeitraum von der Entstehung eines Defekts in der Kontaktfläche bis zur vollständigen Ablösung, nur wenige Mikrosekunden lang ist.“ Der Kontakt reißt dabei mit bis zu sechzig Prozent der Schallgeschwindigkeit des Haftmaterials, das sind etwa zwölf Meter pro Sekunde, ab. „Das ist nur möglich, wenn zwischen dem pilzkopfförmigen Haftelement und dem Untergrund eine einheitliche Spannungsverteilung vorherrscht“, erklärt Heepe. Nur dadurch könne während des Ablösevorgangs so viel elastische Energie gespeichert werden, dass in dieser kurzen Zeit solche hohen Geschwindigkeiten erreicht würden.

Andere Haftgeometrien, wie zum Beispiel die Stempelgeometrie, erzeugen Spannungskonzentrationen und lösen sich an den Kanten ab. Dagegen verhindert die dünne Haftplatte bei den Pilzköpfen, wie beim künstlich hergestellten Gecko-Tape, solche Spannungsspitzen und löst sich daher von innen nach außen ab. Dafür muss viel Kraft aufgewendet werden – entsprechend stark ist die Haftung. „Mit unseren Experimenten haben wir einen wichtigen Effekt eines in der Natur sehr erfolgreichen Haftmechanismus entschlüsseln können“, fasst Heepe zusammen. Sie bestätigten zudem durch ihre Hochgeschwindigkeitsanalyse auch ein von einer italienischen Forschergruppe kürzlich vorgestelltes theoretisches Modell.

Die Erkenntnisse der Kieler Studie dienen nicht nur als Grundlage, um bestehende Haftstrukturen weiterzuentwickeln und zu verbessern. Mit ihnen kommen die Wissenschaftlerinnen und Wissenschaftler im Sonderforschungsbereich 677 „Funktion durch Schalten“ auch einem ihrer erklärten Ziele ein Stück näher: Sie wollen photoschaltbare Haftsysteme schaffen, welche sich durch Licht bestimmter Wellenlängen in einen Haft- und Antihaftzustand versetzen lassen können.

CAU / DE

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen