27.10.2008

Auf dem Weg zu neuen Speichermedien?

Schaltbare Nanostreifen: Spinübergangsverbindung lässt sich in Form geordneter kristalliner Mikrostrukturen auftragen

?

Schaltbare Nanostreifen: Spinübergangsverbindung lässt sich in Form geordneter kristalliner Mikrostrukturen auftragen


Die Steigerung der Speicherkapazitäten ist eine ständige zentrale Herausforderung für Wissenschaft und Technik in unserem Informationszeitalter. Ein deutsch-italienisches Forscherteam verfolgt dabei das Konzept der „nanostrukturierten Speicherdomänen“. Wie die Wissenschaftler um Massimiliano Cavallini vom National Research Council (CNR) in Bologna (Italien) und Mario Ruben vom Forschungszentrum Karlsruhe in der Zeitschrift Angewandte Chemie berichten, gelang es ihnen, verlässliche Nanomuster einer so genannten Spinübergangsverbindung auf Siliciumoxid-Chips herzustellen. Dies ist ein entscheidender Schritt auf dem Weg zu einer neuen Generation molekularer Speichermedien, bei denen binäre Daten durch das „Umschalten“ von Elektronenspins gespeichert werden.

Derzeitige Computerfestplatten speichern Daten, indem die Oberfläche einer rotierenden Scheibe magnetisiert wird. Jede „Speicherzelle“ hat eine „Adresse“, so dass direkt auf die gespeicherten Daten zugegriffen werden kann. Um die Speicherkapazität zu erhöhen, werden die einzelnen magnetisierbaren Bereiche immer kleiner gemacht. Allerdings ist das Limit bald erreicht. Durch thermische Anregung kippen gelegentlich einige der magnetischen Partikel in die andere Richtung. Bei sehr kleinen Domänen kann die ganze Zelle rasch ihre Magnetisierung verlieren.

Um noch größere Informationsdichten zu erzielen, könnte man auch auf andere schaltbare Stoffeigenschaften umsteigen, beispielsweise den Übergang zwischen zwei Spinzuständen. So können Eisen(II)-Verbindungen in einem hohen und einem niedrigen Spinzustand vorliegen. Das „Umschalten“ (Flip) kann durch Temperatur, Druck und elektromagnetische Strahlung erreicht werden.

Für einen Datenspeicher werden aber nicht nur zwei unterscheidbare Zustände für 0 und 1 gebraucht, sondern auch eine eindeutige „Adresse“ für jede Speicherzelle, die von den optischen Schreib- und Leseeinheiten des Computers identifiziert werden kann. Dafür ist eine Schnittstelle notwendig, die die nanoskopischen Spinzustandsübergänge der molekularen Schalteinheiten mit der mikroskaligen Geräteumgebung in Einklang bringt. Dies kann gelingen, wenn die Spinübergangsverbindung in eine hochgeordnete Mikro- und Nanostruktur gebracht werden kann.

Mit speziellen unkonventionellen mikro- und nanolithographischen Methoden gelang es dem Team, einen neutralen Eisen(II)-Komplex in Form feinster Linien auf eine Siliziumwafer zu „drucken“. In einem Selbstorganisationsprozess richten sich die Nanokristalle dabei in einer bevorzugten Orientierung entlang der Linie aus. Außerdem gelang es ihnen, das Muster einer bespielten CD in einen Film der Eisenverbindung zu übertragen. Das beweist zum ersten Mal, dass es möglich ist, mit einer Spinübergangsverbindung lesbare logische Muster zu erzeugen. Um die Streifenstrukturen technologisch nutzbar zu machen, muss der Umschaltvorgang an Raumtemperaturbedingungen angepasst werden; die Arbeiten dazu sind schon in fortgeschrittenem Stadium.

Angewandte Chemie


Weitere Infos:


GWF

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen