15.08.2014

Auf der Spur der Diamanten

Neues Projekt soll Bildgebung von Nanodiamanten als Wirkstoffvehikel verbessern.

Auf Nanodiamanten ruhen große Hoffnungen: Sie könnten zum Beispiel als Transporter Medikamente zielgerichtet in einzelne Körperzellen transportieren und so Nebenwirkungen vermeiden. Um zu untersuchen, wo genau sie sich hinbewegen und wie sie sich im Körper verhalten, muss man sie markieren. Neue Markierungsmethoden im Inneren der Nanodiamanten, die sie mit den gängigen bildgebenden Methoden sowohl der Zellbiologie als auch der Medizin – wie Magnetresonanztomographie oder Einzelphotonen-Emissions-Computertomographie – sichtbar machen, entwickelt ein Konsortium von Wissenschafltern aus Bochum, Herne, Leipzig, Ulm und Würzburg unter Federführung der Ruhr-Universität. Die VolkswagenStiftung fördert das Projekt mit 600.000 Euro.

Abb.: Unterschiedliche Modifikationen des Diamantkristalls erlauben die Markierung von Nanodiamanten, um sie mit gängigen zellbiologischen und medizinischen bildgebenden Verfahren sichtbar zu machen. (Bild: P. Happel, RUB)

Wichtig beim Transport von Wirkstoffen ist, dass der Nanopartikel selbst ungiftig ist und im Körper keine eigene Wirkung hervorruft. Nanodiamanten – Diamanten mit Durchmessern von wenigen Nanometern – sind hierfür nach bisherigen Studien exzellente Kandidaten. Um zu untersuchen, wo sie sich im Körper hinbewegen und wie lange sie dort bleiben, muss man sie sichtbar machen können. Schon länger ist bekannt, dass man Nanodiamanten unter dem Fluoreszenzmikroskop detektieren kann, indem man so genannte Gitterdefekte einbaut: Stellen, an denen das normalerweise ausschließlich aus Kohlenstoffatomen bestehende Kristallgitter Leerstellen und/oder andere Atome enthält. In Zellkulturen können Forscher sie also unter dem Mikroskop betrachten. Die detaillierte Untersuchung der Aufnahme und Abgabe von Nanodiamanten auf zellulärer Ebene ist eines der Ziele des geförderten Projekts „Functionalized Nanodiamonds for biomedical Research and Therapy”. Damit man die Partikel allerdings im lebenden Körper verfolgen kann, müssen sie auch durch in der Medizin übliche bildgebende Verfahren detektierbar sein.

Entsprechende, ebenfalls auf Gittermodifikationen beruhende Markierungsmethoden auf Diamantnanopartikel zu übertragen ist ein weiteres Ziel des Projekts. „Der große Vorteil der von uns untersuchten Markierungsmethoden ist, dass sie alle im Inneren des Nanopartikels lokalisiert sind, und nicht, wie meistens üblich, an der Oberfläche des Partikels“, erklärt Patrick Happel vom RUBION, der zentralen Einrichtung für Ionenstrahlen und Radionuklide der RUB. „Dadurch können sie sich nicht im Körper von den Partikeln lösen und somit fehlerhafte Signale geben. Darüber hinaus erlaubt die Markierung im Inneren der Nanodiamanten einen direkten Vergleich der Ergebnisse von Zellkulturen und lebendem Gewebe, da trotz unterschiedlicher Markierungen die biochemischen und biophysikalischen Eigenschaften nicht verändert werden.“ Darüber hinaus lässt sich die Oberfläche der Nanodiamanten auf viele unterschiedliche Arten chemisch modifizieren, so dass zusätzlich zur innen liegenden Markierung weitere Funktionalitäten hinzugefügt werden können, die für einen erfolgreichen Einsatz in der Medizin notwendig sind.

RUB / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

Meist gelesen

Themen