Besonderes Licht enthüllt Chiralität
Chiraler Vortex liefert zuverlässige Messmethode für chirale Moleküle.
Eine völlig neue Lichtstruktur hilft, die Chiralität von Molekülen genauer und robuster zu messen als je zuvor, ein großer potenzieller Schritt für die Medizin. Die neue Studie wurde vom Max-Born-Institut in Zusammenarbeit mit dem King‘s College London, dem Imperial College London und der Università degli Studi di Trieste geleitet. Das Team hat eine völlig neue Lichtstruktur geschaffen, die in der Zeit eine chirale Kurve nachzeichnet. Diese chirale Kurve hat an verschiedenen Punkten im Raum unterschiedliche Formen und bildet eine Vortex-Struktur. Durch die Interaktion mit sich bewegenden chiralen Teilchen liefert der neue chirale Vortex eine genaue und robuste Messmethode.
Chiralität ist eine Form von Asymmetrie, die in mehreren Wissenschaftsbereichen, einschließlich Physik, Chemie, Biologie und Medizin, wichtig ist. Viele Moleküle, wie menschliche Hände, treten paarweise auf: Sie haben eine rechtshändige und eine linkshändige Version, die Spiegelbilder voneinander sind, aber nicht ineinandergelegt werden können, um gleich auszusehen.
Diese Chiralität bestimmt, wie es mit biologischen Systemen wie dem menschlichen Körper interagiert. Das Gleichgewicht zwischen rechtshändigen und linkshändigen Versionen desselben Moleküls ist in allen Lebewesen gestört. Das ermöglicht die Stabilität von Proteinen und Stoffwechselprozessen. Deshalb ist es so wichtig, linkshändige von rechtshändigen Molekülen zu unterscheiden.
„Spitzenforschung, zum Beispiel von meinem Kollegen Herman Wolosker vom Technion, zeigt, dass das relative Verhältnis von linken zu rechten Molekülen als Biomarker für Krebs, Nieren- und Hirnerkrankungen dienen kann“, sagt Olga Smirnova. Nicola Mayer, Postdoktorand in der Gruppe von Olga Smirnova am Max-Born-Institut und angehende Marie Skłodowska-Curie-Fellow am King’s College London sowie Erstautor der Studie, ergänzt: „Mit unserer neuen Methode kann ein kleiner Überschuss in der Konzentration eines der beiden Spiegelbild-Moleküle nachgewiesen werden, möglicherweise genug, um einen lebensverändernden Unterschied zu machen."
Optische Methoden zur Unterscheidung von linkshändigen und rechtshändigen Molekülen sind schneller als chemische Methoden und haben ein Potenzial zur Erkennung chiraler Biomarker. Traditionelle optische Methoden stoßen jedoch auf eine Reihe von Herausforderungen, einschließlich der Notwendigkeit großer Probenmengen, um die Linkshändigkeit oder Rechtshändigkeit genau zu identifizieren, was sehr teuer werden kann.
Die neue Forschung führt eine völlig neue Lichtstruktur ein: Das elektrische Feld des Lichts zeichnet in der Zeit eine chirale Kurve nach, deren Händigkeit sich ändert, während man um den Strahl herumgeht. Diese räumliche Variation der Händigkeit erzeugt dann einen „chiralen Vortex“. Wenn chirale Moleküle mit diesem Vortex interagieren, emittieren sie Photonen durch Erzeugung Hoher Harmonischer in einem erkennbaren Muster, das durch ein Experiment erfasst werden kann.
Wenn die Händigkeit eines Moleküls geändert wird, dreht sich das entsprechende Chiralitätsmuster im Raum. Dies wird durch Messungen in einem rotierenden Farbmuster erfasst, das die Händigkeit des Moleküls unterscheidet. Ganz links befindet sich ein linkshändiges Molekül, während das rechts ein rechtshändiges ist, beide mit sehr spezifischen Mustern.
Wenn die Händigkeit des Moleküls geändert wird, dreht sich das entsprechende Muster im Raum. Dies ermöglicht eine genauere Bestimmung der Händigkeit der Probe im Vergleich zu Standardmethoden, die sich auf das vergleichsweise schwache Magnetfeld des Lichts verlassen, das ein viel schwächeres Signal erzeugt.
Nicola Mayer sagt: „Traditionelle Messungen der Chiralität hatten Schwierigkeiten, die Konzentration von rechts- und linkshändigen Molekülen in Proben zu identifizieren, die fast gleiche Mengen von beiden enthalten. Mit unserer neuen Methode kann ein winziger Überschuss in der Konzentration eines der beiden Spiegelbild-Moleküle nachgewiesen werden, beispielsweise wenn die Probe zu 49 Prozent rechtshändig und zu 51 Prozent linkshändig ist. Sie könnte Anwendungen bei der Erkennung chiraler Biomarker finden.“
„Indem wir uns auf die Erkennung eines rotierenden Musters des von den Molekülen emittierten Lichts konzentrieren, ist es viel einfacher, geringfügige Unterschiede in der Händigkeit von verdünnten Proben zu erkennen und zu interpretieren. Darüber hinaus bedeutet die Vortex-Natur des von uns entworfenen Laserstrahls, dass die Signale, die wir empfangen, robust gegen die üblichen Fallstricke von Chiralitätsexperimenten im Labor sind, wie Schwankungen in der Lichtintensität, was es mehr Menschen ermöglicht, diese Arbeit durchzuführen."
„Dieses Verständnis kann den Grundstein dafür legen, das Verhalten von Elektronen zu kontrollieren und letztendlich sogar chemische Reaktionen mit Licht zu beeinflussen“, so Nicola Mayer. „Diese Signale können auch einen Einblick in die Bewegung von Elektronen innerhalb von Molekülen mit ihrer natürlichen Geschwindigkeit geben. Dieses Verständnis kann den Grundstein dafür legen, das Verhalten von Elektronen zu formen und letztendlich sogar chemische Reaktionen mit Licht zu beeinflussen.“
MBI / DE