21.04.2010

Der ewige Kreis

Chemiker entwickeln ein Nanogefäß mit integriertem Schalter.

Chemiker entwickeln ein Nanogefäß mit integriertem Schalter.

Der Ouroboros ist ein in vielen Kulturen verbreitetes archaisches Motiv einer sich in den Schwanz beißenden Schlange, das die Ewigkeit und Zyklen symbolisiert. Julius Rebek, Jr. und Fabien Durola (The Scripps Research Institute, La Jolla, USA) haben jetzt einen "molekularen Ouroboros" konstruiert und dieser Verbindungklasse den passenden Namen "Ouroborand" gegeben. Wie die Forscher berichten, ist ihr Ouroborand eine molekulare "Maschine" mit der Funktion eines Nanogefäßes mit eingebautem Schalter, der den Zugang zu seinem Hohlraum reguliert.

Abb.: Ouroboros, Nanogefäße mit integriertem Schalter (Bild: Rebek Jr et al.)

Molekulare Maschinen und nanoskopische Bauteile imitieren - zumindest theoretisch - die Funktionen ihrer makroskopischen Analoga. So gibt es beispielsweise nanoskopische Kapseln, die als Reaktionsgefäße dienen können, Moleküle mit gegeneinander drehbaren Teilen, die Rotoren nachahmen, und verschiedene Typen von An/Aus-Schaltern.

Der Ouroborand des amerikanischen Forscherduos ist ein Molekül, das aus mehreren Teilen besteht: Ein Hohlraum, der "Gastmoleküle" aufnehmen kann, dient als Gefäß. Am Rand trägt das Gefäß einen schaltbaren "Rotor" (eine Bipyridyl-Einheit), an den über einen Verbindungsarm passender Länge ein intramolekularer "Gast" wie eine Hand angeknüpft ist. Der Rotor ist so gedreht, dass sich die "Hand" am Ende des Verbindungsarms innerhalb des Gefäßes befindet. Das Gefäß ist damit blockiert und für Fremdmoleküle nicht zugänglich, also auf "geschlossen" geschaltet. In dieser Konformation erinnert das Molekül an die Schlange, die sich ihren eigenen Schwanz einverleibt, den Ouroboros.

Werden Zinkionen in die Lösung gegeben, lösen sie einen Schaltvorgang aus: Der Rotor hat zwei Bindestellen für Zinkionen. Damit beide ein Ion binden können, muss der Rotor eine halbe Drehung ausführen. Der Verbindungsarm macht diese Drehbewegung mit. Dadurch wird die "Hand" aus dem Gefäß herausgezogen. Das Gefäß ist nun frei und für Fremdmoleküle zugänglich, also auf "offen" geschaltet. Werden die Zinkionen wieder aus der Lösung entfernt, dreht sich der Rotor in seine Ausgangsposition zurück, und die Hand wirft das Fremdmolekül wieder aus dem Gefäß hinaus.

Gesellschaft Deutscher Chemiker e.V.

 

Weitere Infos

AL

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen