Die maximale Knüllung
Packungsdichte lang gestreckter Objekte hängt von mehreren Faktoren ab.
Die optimale Packung von lang gestreckten Objekten in engen Kapseln beschäftigt Naturwissenschaftler und Ingenieure schon seit geraumer Zeit. Wie effektiv sich quasi-
Abb.: Drähte können sich auf unterschiedliche Art und Weise zusammenknüllen – von sehr geordnet bis sehr ungeordnet. Geordnete Zustände (links) sind dichter gepackt als unordentliche Zustände (rechts). (Bild: M. R. Shaebani, U. Saarland)
Seit Johannes Keplers Hypothese über die effektivste Methode, Kanonen auf einem Schlachtschiff zu stapeln, haben Wissenschaftler über die maximal erreichbare Verdichtung von Objekten nachgegrübelt. Wundersamer Weise befindet sich auch unser gesamtes Erbgut in Form eines meterlangen DNA-Stranges dicht gepackt im winzigen Zellkern jeder Körperzelle. Den Verdichtungsprozess von quasi-
In ihren Versuchen verstauten die niederländischen Forscher unterschiedlich dicke Plastik-
„Wie erwartet, bestimmen die Eigenschaften des Drahtes die Effektivität des Verdichtungsprozesses“, berichtet Reza Shaebani. Die Studie habe aber auch einige überraschende Ergebnisse hervorgebracht: So seien dünnere Drähte am Ende weniger dicht gepackt als dicke. „Um die gleiche Dichte zu erreichen, müsste ein dünner Draht länger sein, doch bei zunehmender Länge stehen ihm immer weniger Hohlräume zur Verfügung – das ist ein wechselwirkendes System“, erklärt der Physiker. Je nach Draht-
Die Studie liefert einen neuen Einblick in die Mechanismen, die dem „Verknüllen“ von Drähten mit plastischen und elastischen Eigenschaften zugrunde liegen. So können die untersuchten elastoplastischen Drähte als Modellsysteme für DNA-Moleküle und andere Biopolymere dienen. Dies könnte beispielsweise zu innovativen Behandlungsmethoden von Arterienerweiterungen (Aneurysmen) führen. Potenzielle Bedeutung haben die Ergebnisse auch für industrielle Prozesse, bei denen man oft am umgekehrten Prozess, dem Entwirren von Drähten, interessiert ist.
U. Saarland / DE