17.05.2019

Elektronen in organischen Halbleitern

Ladungstransfer-Mechanismus an Kontakten aufgeklärt.

Ladungs­transfer­prozesse spielen eine grundlegende Rolle bei allen elek­tronischen und opto­elektronischen Bauelementen. Für Bauelemente basierend auf organischer Dünnfilm­technologie sind dies etwa die Injektion der Ladungsträger über die metallischen Kontakte und der Ladungs­transport im organischen Film selbst. Injektions­prozesse an den Kontakten sind hierbei von besonderem Interesse, da für optimale Effizienten der Bauelemente die Kontakt­widerstände an den Grenzf­lächen minimiert werden müssen. Allerdings sind solche internen Grenzflächen nur schwer zugänglich und daher nicht gut verstanden.

Abb.: Schematischer Querschnitt durch das Bauelement, um das Verhalten der...
Abb.: Schematischer Querschnitt durch das Bauelement, um das Verhalten der Elektronen zu untersuchen. (Bild: F. Ortmann)

Das Team um Frank Ortmann vom Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnte nun gemeinsam mit Forschern aus Spanien, Belgien und Deutschland zeigen, dass sich der elektronische Transport­mechanismus bei der Injektion in einen organischen Film durch das Marcus-Hüpfmodell beschreiben lässt, welches aus der Physi­kalischen Chemie bekannt ist und auf den amerikanischen Chemiker Rudolph Arthur Marcus zurückgeht.

Durch vergleichende theo­retische und experi­mentelle Unter­suchungen konnten die in der Marcus-Theorie vorher­gesagten Transport­regime zweifelsfrei identi­fiziert werden. „Die von R.A. Marcus im Zusammenhang mit Frage­stellungen der chemischen Synthese in den 1950er Jahren abgeleiteten Vorhersagen, insbe­sondere das ‚Invertierte Marcus-Regime‘, konnten erst viele Jahr­zehnte später durch systematische Experimente zu chemischen Reaktionen bestätigt werden. Für seine wichtigen theo­retischen Beiträge hat R.A. Marcus den Chemie-Nobelpreis 1992 verliehen bekommen“, so Ortmann.

„Nun ist der Nachweis des ‚Inver­tierten Marcus-Regimes‘, bei dem eine höhere Spannung einen niedrigeren Strom erzeugt, erstmalig in einem orga­nischen Transistor gelungen, bei dem die Injektions-Spannung aktiv kontrol­liert werden kann“, führt Ortmann weiter fort. Dies führe zum besseren Verständnis elektronischer und opto­elektronischer organischer Bauelemente allgemein.

TU Dresden / JOL

Weitere Infos

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen