Elektronische Ladungsverteilung auf atomarer Skala
Neuer experimenteller Zugang verschafft besseres Verständnis von Metall-Halbleiter-Grenzflächen.
In jedem elektronischen Halbleiterbauelement spielen die Grenzflächen zwischen verschiedenen Materialien eine zentrale Rolle. Von fundamentaler Bedeutung ist dabei die atomare und elektronische Struktur von Metall-Halbleiter-Grenzflächen. Für die Weiterentwicklung und das Design von neuen, nur wenigen nanometer-großen Bauelementen ist ein grundlegendes Verständnis dieser Grenzflächen von zentralem Interesse. Allerdings gibt es bislang kein allgemein akzeptiertes Modell, das Metall-Halbleiter-Grenzflächen in ihrer Gänze beschreibt. Ein Grund hierfür ist, dass den Wissenschaftlern bisher ein experimenteller Zugang zur Erforschung der atomaren Struktur dieser Grenzflächen fehlte.
Abb.: Mithilfe einer sehr scharfen Metallspitze (rot) wird die Eisen-Galliumarsenid-Grenzfläche abgerastert. Dies ermöglicht die Abbildung und Untersuchung der Grenzfläche auf atomarer Skala. (Bild: GAU)
Physiker der Universität Göttingen und des Forschungszentrums Jülich untersuchten nun die technologisch interessante Eisen-Galliumarsenid-Grenzfläche mithilfe eines in Göttingen entwickelten Rastertunnelmikroskops. „Mit einer sehr scharfen Metallspitze konnten wir die Struktur der Grenzfläche gleichzeitig mit ihren elektronischen Eigenschaften auf atomarer Skala abbilden“, erläutert Tim Iffländer vom IV. Physikalischen Institut, der sich im Rahmen seiner Doktorarbeit mit dem Thema beschäftigt. „In Verbindung mit den theoretischen Rechnungen der Kollegen aus Jülich fanden wir heraus, dass die elektronische Barriere zwischen Metall und Halbleiter zum einen durch Ladungen dominiert wird, die vom Metall in den Halbleiter hineinragen, zum anderen aber auch ganz entscheidend von den chemischen Bindungen zwischen Metall und Halbleiter abhängt.“
„Die hohe Übereinstimmung der gemessenen mit der theoretisch berechneten Ladungsverteilung an der Grenzfläche untermauert, dass unser experimenteller Zugang besonders gut geeignet ist, um die elektronischen Eigenschaften von Metall-Halbleiter-Grenzflächen auf atomarer Skala zu erforschen und so die Relevanz von unterschiedlichen theoretischen Modellen zu überprüfen“, ergänzt Arbeitsgruppenleiter Martin Wenderoth. „Unser Experiment dient außerdem als Ausgangspunkt für weitere Studien, die sich mit dem Einfluss von Defekten und einer veränderten atomaren Struktur an der Grenzfläche auf die elektronischen Eigenschaften von Metall-Halbleiter-Kontakten beschäftigen.“
GAU / OD