24.10.2023

Ereignisbasierte Architektur mit photonischen Prozessoren

Adaptives optisches neuronales Netz verbindet einige Tausend künstliche Neuronen.

Moderne Rechenmodelle, die beispielsweise für komplexe und leistungsfähige KI-Anwendungen genutzt werden, bringen herkömmliche digitale Computerprozessoren an ihre Grenzen. Neuartige Rechenarchitekturen, die der Funktionsweise biologischer neuronaler Netze nachempfunden sind, versprechen eine schnellere und energieeffiziente Datenverarbeitung. Ein Team um die Physiker Wolfram Pernice und Martin Salinga und den Informatiker Benjamin Risse von der Uni Münster hat mit photonischen Prozessoren eine ereignisbasierte Architektur entwickelt. Ähnlich dem Gehirn ermöglicht sie eine fortlaufende Anpassung der Verschaltung innerhalb des neuronalen Netzes. Die veränderbare Verschaltung ist eine Grundlage für Lernprozesse.

Abb.: Der Chip enthält fast 8.400 funktionsfähige künstliche Neuronen aus...
Abb.: Der Chip enthält fast 8.400 funktionsfähige künstliche Neuronen aus wellenleiter-integriertem Phasenwechselmaterial.
Quelle: J. Schütte, U. Münster

Für ein maschinelles neuronales Netz benötigt man künstliche Neuronen, deren Aktivierungen durch äußere Anregungen und Verbindungen zu anderen Neuronen gegeben sind. Die Verbindungen zwischen diesen künstlichen Neuronen werden wie beim biologischen Vorbild Synapsen genannt. Das Forschungsteam nutzte ein Netz aus fast 8.400 optischen Neuronen aus wellenleiterintegriertem Phasenwechselmaterial und zeigte: Die Verbindung zwischen jeweils zwei dieser Neuronen kann tatsächlich stärker oder schwächer werden und es können sich Verbindungen neu bilden oder bestehende Verbindungen auflösen. Die Synapsen waren dabei im Gegensatz zu anderen, ähnlichen Arbeiten keine Hardwareelemente, sondern durch die Eigenschaften der optischen Pulse codiert – durch die jeweilige Lichtwellenlänge und die Intensität des Pulses. Dadurch war es möglich, einige Tausend Neuronen auf einem einzigen Chip unterzubringen und optisch zu verbinden.

Im Vergleich zu den herkömmlichen elektronischen Prozessoren bieten lichtbasierte Prozessoren eine deutlich höhere Bandbreite und ermöglichen dabei die Durchführung komplexer Rechenaufgaben – bei geringerem Energieverbrauch. „Unser Ziel ist es, eine optische Rechenarchitektur zu entwickeln, die es langfristig ermöglicht, KI-Anwendungen schnell und energieeffizient zu berechnen“, fasst Frank Brückerhoff-Plückelmann von der Uni Münster zusammen.

Zur Methode: Das eingesetzte, nichtflüchtige Phasenwechselmaterial kann zwischen einer ungeordneten Struktur und einer kristallinen Struktur mit geordnetem Atomgitter geschaltet werden. Diese Eigenschaft ermöglicht auch ohne Energiezufuhr eine dauerhafte Datenspeicherung. Die Forscher testeten die Leistung des neuronalen Netzes, indem sie es mit einem evolutionären Algorithmus darauf trainierten, zwischen deutschen und englischen Textbeispielen zu unterscheiden. Als Erkennungsparameter nutzten sie die Anzahl von Vokalen im Text.

U. Münster / RK


Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen