30.01.2024

Erstes Licht für Radioteleskop

Prototyp-Antenne für das SKA-Teleskop in Südafrika ist vollständig aufgebaut.

Deutschland wird Anfang 2024 zum Vollmitglied des internationalen SKA-Observatoriums – der zwischenstaatlichen Organisation, die derzeit die Teleskope in Australien und Südafrika baut. Um Schlüsseltechnologien mit einzigartigem wissenschaftlichem Nutzen zu entwickeln, hat das Max-Planck-Institut für Radioastronomie in Bonn zusammen mit der OHB Digital Connect GmbH und dem „South African Radio Astronomy Observatory“ das SKA-MPIfR-Teleskop (SKAMPI) gebaut, eine Prototyp-Antenne für das SKA-Mid-Teleskop in Südafrika, für technische Inbetriebnahme und wissenschaftliche Nutzung. 


Abb.: Das SKA-MPIfR-Teleskop (SKAMPI) in der Karoo-Halbwüste in Südafrika
Abb.: Das SKA-MPIfR-Teleskop (SKAMPI) in der Karoo-Halbwüste in Südafrika
Quelle: MPIfR / G. Wieching

Das SKA-MPIfR-Teleskop (SKAMPI) wurde Mitte 2018 am südafrikanischen SKA-Standort in der Karoo-Halbwüste vollständig aufgebaut. Erste Testbeobachtungen fanden im Dezember 2019 statt, und die technische Inbetriebnahme mit Systembewertung, Hochfrequenzstörungstests und Leistungstests dauerte bis Anfang 2022 und führte schließlich zur Veröffentlichung der entsprechenden Systemqualifikationsdokumente im Jahr 2022. Seitdem wurden Entwicklungen vorangetrieben, um eine Möglichkeit für einen ferngesteuerten und robotischen Betrieb von SKAMPI zu schaffen, den Betrieb des Teleskops mit der Frontend- und Backend-Steuerung zu integrieren und die Beobachtungen mit der Datenerfassung und automatischen Kalibrierung abzustimmen.

SKAMPI verfügt über ein volldigitales Frontend mit zwei Empfangseinheiten, für Beobachtungen im S-Band bei Frequenzen zwischen 1,75 und 3,5 Gigahertz und im Ku-Band zwischen 12,0 und 18,0 Gigahertz“, sagt Gundolf Wieching, Leiter der Technischen Abteilung Elektronik am MPIfR. „Die Empfänger basieren auf dem für die MeerKAT-Teleskope konzipierten S-Band-System des MPIFR. Das Datenerfassungs- und -verarbeitungssystem, das sogenannte Backend, ist ein vom MPIfR entwickeltes Hochleistungsrechnersystem, das überwiegend Grafikprozessoren (GPUs) als Beschleunigerkarten für die Berechnung in handelsüblichen Servern nutzt.“ 

Das Backend-System kann dynamisch angepasst werden, um Beobachtungen zu verschiedenen wissenschaftlichen Fragestellungen wie bei Pulsaren, Spektropolarimetrie-Beobachtungen oder VLBI zu bedienen. Die Größe von SKAMPI mit einer projizierten Apertur von 15 m in Kombination mit einem vor Hochfrequenzstörungen geschützten Standort bietet eine seltene Kombination aus einem großen Sichtfeld und damit einer schnellen Himmelsabdeckung mit hervorragenden Polarisationseigenschaften, um Magnetfelder im Universum zu untersuchen.

Wir haben mit SKAMPI die ersten Beobachtungen im S-Band bei Frequenzen zwischen 1,75 und 3,5 Gigahertz durchgeführt und die spektralen und Pulsar-Fähigkeiten des Teleskops mit der Abbildung der Radioemission des Südhimmels und dem Nachweis des Vela-Pulsars demonstriert“, sagt Hans-Rainer Klöckner vom MPIfR, der Projektwissenschaftler für SKAMPI.

Der gesamte Himmel wurde in zwei aufeinanderfolgenden Nächten mit einer Fahrgeschwindigkeit von 2,5 Grad pro Sekunde am Himmel beobachtet. Obwohl die unkalibrierten Messungen noch durch Hochfrequenzstörungen, atmosphärische und systembedingte Schwankungen beeinflusst werden, zeigen die Aufnahmen bereits einen Großteil der charakteristischen Radiostrahlung unserer Milchstraße und externer Galaxien wie Centaurus A und versprechen, das Ziel zu erreichen, eine der empfindlichsten Himmelsdurchmusterungen erstellen zu können. „Dieses Bild ist ein wichtiger Schritt bei der Inbetriebnahme des Teleskops und demonstriert die Eignung des Teleskops und unseres Ansatzes für großflächige Kartierungen“, sagt Ferdinand Jünemann vom MPIfR, der die Daten für seine Doktorarbeit nutzt. „Wir haben im Moment noch 40 Mal mehr Beobachtungen zu verarbeiten, um eine erste vollständige Durchmusterung des Südhimmels im S-Band zu ermöglichen.“

Die Fähigkeit von SKAMPI zur Beobachtung von Radiopulsaren wurde mit der Erstbeobachtung des bekannten Vela-Pulsars demonstriert. Der Nachweis des Vela-Pulsars entspricht genau den Erwartungen aus der Literatur und setzt ein gutes Vorzeichen für künftige Langzeitstudien von hellen Pulsaren mit SKAMPI.

Die First-Light-Messungen geben einen guten Eindruck von der Datenqualität und den Fähigkeiten des Teleskops und lassen auf einzigartige wissenschaftliche Forschungsergebnisse hoffen. Der volle wissenschaftliche Betrieb wird bereits in diesem Jahr aufgenommen, und zu den speziellen Forschungsprogrammen gehören die Untersuchung der Natur variabler Quellen wie aktiver galaktischer Kerne oder schneller Radiobursts, die Beobachtung starker Pulsare im Hinblick auf Rotations- oder Magnetosphärenereignisse, die Untersuchung des Innenlebens von Strahlungsausbrüchen (Bursts), die mit dem FERMI-Satelliten als Teil eines kleinen VLBI-Teleskoparrays entdeckt wurden, und die Verbesserung unseres Verständnisses des galaktischen Vordergrunds.

Parallel zu den ersten wissenschaftlichen Programmen sind weitere technische Entwicklungen geplant, darunter weiterentwickelte Kalibrierungsstrategien und die Schaffung eines Konzepts, das SKAMPI in ein vollständig robotisches System verwandeln wird. In diesem Rahmen werden betriebliche, mechatronische und datenverarbeitende Informationen kombiniert und die Bewertung des gesamten Signalverarbeitungspfads bis hin zum endgültigen wissenschaftlichen Datenprodukt ermöglicht.

Für SKAMPI haben wir unser Softwaresystem so erweitert, dass Rechenressourcen, die nicht für die Echtzeit-Signalverarbeitung der aktuellen Beobachtung benötigt werden, von Wissenschaftlern für erste automatisierte Analysen genutzt werden können“, erklärt Tobias Winchen, ebenfalls vom MPIfR. „Die Ergebnisse stehen bereits kurz nach den Beobachtungen zur Verfügung und liefern so ein schnelles Feedback zu den Beobachtungen und der Systemleistung. In Kürze werden wir beginnen, ein vollautomatisches System zu testen, das die Ergebnisse der automatisierten Analysen einbezieht, um dadurch die gesamten Beobachtungen eines wissenschaftlichen Programms zu verwalten.“

Obwohl ein großer Teil der Beobachtungszeit mit SKAMPI umfangreichen internen Wissenschaftsprogrammen gewidmet sein wird, steht das Teleskop für Beobachtungsanfragen südafrikanischer und deutscher Wissenschaftlerinnen und Wissenschaftler offen, und es wird auch die Möglichkeit bestehen, ein Bildungsprogramm für Schulen und Universitäten einzurichten.

MPIfR / DE


EnergyViews

EnergyViews
Dossier

EnergyViews

Die neuesten Meldungen zu Energieforschung und -technologie von pro-physik.de und Physik in unserer Zeit.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Photo
28.11.2024 • NachrichtPanorama

Goodbye SOFIA

Mit einem Festakt wurde Ende November am Raumfahrtzentrum Baden-Württemberg der erfolgreiche Projektabschluss des Stratosphären-Observatoriums für Infrarot-Astronomie (SOFIA) gefeiert.

Themen