02.02.2016

Extrapolieren verboten

Sub-Nanometer-Katalysatoren verhalten sich anders als prognostiziert.

Millionen Tonnen Margarine werden jährlich durch die Umsetzung ungesättigter Fettsäuren aus Pflanzenölen mit Wasserstoff hergestellt. Während die Hydrierung von Pflanzenölen mit günstigen Nickel-Katalysatoren gelingt, benötigen viele andere Reaktionen das teure Platin. Da die Hydrierungsreaktion nur an der Oberfläche abläuft und die inneren Atome keine Rolle spielen, entwickelt die Industrie immer kleinere Katalysatorpartikel. Die kleinsten von ihnen enthalten inzwischen kaum mehr als hundert Atome. Bei noch kleineren Partikeln übernehmen allerdings quantenphysikalische Effekte die Regie, und die bisherigen Modelle können die Eigenschaften der Platinpartikel nicht mehr vorhersagen.

Abb.: Berechnete Struktur eines Pt10-Clusters auf einer Magnesiumoxid-Oberfläche. Die überschüssige Elektronendichte auf der Oberfläche des Clusters ist hellblau eingefärbt, Pt (blau), Mg (grau), Sauerstoff (weiß, Bild: U. Landman & B. Yoon, GIT)

Ein Forscherteam der TU München und des Georgia Institute of Technology in den USA hat diese Effekte nun mit atomgenauer Präzision untersucht. Als Modell nahmen die Wissenschaftler die von Platin katalysierte Reaktion von Ethen zu Ethan. Wie die ungesättigten Fettsäuren enthält Ethen eine Kohlenstoff-Doppelbindung. Nimmt diese zwei Wasserstoffatome auf, wird Ethen zum gesättigten Ethan.

Seit mehr als fünfzig Jahren teilen Chemiker katalytische Reaktionen in solche ein, die von der Struktur und Größe des Katalysators beeinflusst werden und solche, auf die diese Faktoren keinen Einfluss haben. „Die Ethenhydrierung galt als typisches Beispiel einer größenunabhängigen Reaktion. Wir vermuteten jedoch, dass diese Unterscheidung für Katalysatorpartikel im Subnanometer-Bereich nicht mehr gilt“, sagt Ulrich Heiz von der TU München. Die Arbeitsgruppe von Heiz produzierte dazu Platinpartikel, die jeweils nur eine kleine Anzahl von Atomen besitzen. Mit ihrer Anlage können die Forscher gezielt Platincluster mit einem bis achtzig Platinatomen produzieren. An diesen ließen sie Ethen und Wasserstoff miteinander reagieren und analysierten die Ergebnisse.

Die Reaktivität hängt dabei sehr stark von der genauen Anzahl an Atomen ab. Cluster mit weniger als zehn Atomen waren kaum aktiv. Ab zehn Atomen wächst die Reaktivität bis zu einem Maximum bei Clustern aus 13 Atomen. Sie besitzen eine deutlich höhere Reaktivität als eine normale Platinoberfläche – ein klarer Beleg dafür, dass die in den letzten Jahrzehnten für diese Reaktion postulierte Größenunabhängigkeit nicht korrekt war. Untermauert werden die experimentellen Beobachtungen durch die von den amerikanischen Kollegen entwickelten theoretischen Modelle. Sie erlauben nun eine präzise Aussage darüber, welches Atom warum für welche Aktivität verantwortlich ist. So kleine Cluster verhalten sich nicht mehr wie Metallkörper sondern wie Moleküle, ihre Eigenschaften hängen eindeutig von der Anzahl der Atome ab. Die Atome der kleinen Cluster können sich zu verschiedenen Formen – Isomeren – zusammen finden. Außerdem spielen bei Clustern mit wenigen Atomen auch die Wechselwirkungen mit den Atomen des Trägermaterials eine wichtige Rolle.

Inzwischen haben die Chemiker der TU München verschiedene Verfahren entwickelt, wie sie die kleinen Platincluster auf Trägermaterialien fixieren können. „Wir verhindern damit, dass sich die kleinen Partikel zu größeren zusammenlagern“, erläutert Heiz. „Die Oberfläche wiederum beeinflusst, welche Form die Cluster bevorzugt annehmen. Zusammen mit der Clustergröße haben wir damit ein Instrumentarium, die Eigenschaften für eine bestimmte Reaktion maßzuschneidern.“ Die Wissenschaftler wollen in naher Zukunft nasschemische Verfahren entwickeln, mit denen effizient größere Mengen kleiner Platincluster mit einer genau definierten Anzahl von Atomen produziert werden können.

TUM / RK

Weitere Infos

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe
ANZEIGE

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Meist gelesen

Themen