17.07.2014

Gezähmte Spins

Kristallgittereffekte in dünnen Drähten und äußere Felder können sich bei Spin-Bahn-Feldern gegenseitig aufheben.

Ein internationales Forscherteam der Universitäten in Regensburg und Sendai in Japan hat ein neues Verfahren entwickelt, um die Stärke der Spin-Bahn-Wechselwirkung in Halbleitern zu bestimmen. Die Kontrolle dieser Kraft ist von zentraler Bedeutung für die Entwicklung einer Spinelektronik, die in Zukunft die Wirkungsweise von Transistoren revolutionieren könnte. In herkömmlichen Transistoren nutzt man ausschließlich die Ladung von Elektronen, um den Stromfluss zu kontrollieren und auf diese Weise logische Operationen auszuführen. Dem gegenüber versucht man in der Spinelektronik, auch ihren Spin zu nutzen.

Abb.: Mit diesem Aufbau maßen die Forscher gleichzeitig in drei Orientierungen. (Bild: A. Sasaki et al.)

In Halbleitern ergeben sich nochmals besondere Bedingungen: Hier unterliegen Elektronen wegen der Kristallgitterstruktur der Halbleiter oder aufgrund einer von außen angelegten elektrischen Spannung dem Einfluss von elektrischen Feldern. Die elektrischen Felder wirken wiederum auf die sich bewegenden Elektronen-Spins wie Magnetfelder, an denen sich diese ausrichten. Dies eröffnet die Möglichkeit, die Elektronen-Spins in einem eigentlich nicht-magnetischen Halbleiter über „effektive“ Magnetfelder zu kontrollieren oder zu beeinflussen.

Vor diesem Hintergrund hat das Team um Klaus Richter vom Institut für Theoretische Physik der Universität Regensburg in Kooperation mit Experimentalphysikern um Junsaku Nitta von der Tohoku University in Sendai eine Methode entwickelt, um die jeweilige Spin-Bahn-Wechselwirkung und die damit verknüpften Magnetfelder näher zu bestimmen. Ausgangspunkt war die Idee, die Elektronen in ultradünnen Drähte mit einem Querschnitt von etwa 10 auf 700 Nanometern – gewissermaßen entlang einer Linie – einzusperren. Die damit erzwungene, praktisch eindimensionale Bewegung der Elektronen führt dazu, dass die Magnetfelder eine spezifische Ausrichtung annehmen, die auf die Stärke der Spin-Bahn-Wechselwirkungen rückschließen lässt.

Spin-Bahn-Felder sind für eine Halbleiter-basierte Spinelektronik Fluch und Segen zugleich: Sie erlauben zum einen die Steuerung und Kontrolle der Spinausrichtung, können aber andererseits auch dazu führen, dass eine ursprüngliche Spinpolarisation der Ladungsträger durch die Felder zunichte gemacht wird. Daher kann es von Vorteil sein, die Wirkung der Spin-Bahn-Felder zu minimieren und im besten Fall gänzlich auszuschalten. Das ist möglich, wenn sich die beiden Ursachen, die Kristallgittereffekte von Halbleitern und die Felder durch eine von außen angelegte Spannung, in ihrer Wirkung gegenseitig aufheben. Das Team aus Regensburg und Sendai konnte nachweisen, dass dies durch ein geschicktes Justieren der externen Spannung möglich ist. Das Resultat ist eine maßgeschneiderte helixförmige Rotationsbewegung der Elektronen-Spins, während sich die Elektronen durch die Nanodrähte bewegen.

U. Regensburg / DE

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen