Gut geknickt ist halb getarnt
Ein „Knick“ im Licht rückt Tarnkappen im optischen Bereich näher.
Metamaterialien mit maßgeschneiderten elektromagnetischen Eigenschaften können negative Brechungsindices für elektromagnetische Wellen ermöglichen. Dies würde Licht einen „falschen Knick“ verschaffen und ganz neue optische Möglichkeiten eröffnen. Eine davon ist die Entwicklung von Tarnkappensystemen, wie sie für Mikrowellen bereits gelungen ist.
„Für Mikrowellen stellt die Herstellung spezieller Metamaterialien kein besonderes technologisches Problem dar – im optischen Bereich sind technische Realisierungen aber erheblich schwieriger, weil die Lichtwellenlänge mit nur einem halben Mikrometer wesentlich kleiner ist“, sagt Heinz Langhals von der LMU München. Erste Versuche auf diesem Gebiet erforderten nanotechnologische Methoden mit entsprechend hohem Aufwand. Langhals gelang es nun mit seinem Mitarbeiter Alexander Hofer, Metamaterialien aus organischen Molekülen zu entwickeln, die sich effizienter herstellen lassen als entsprechende metallische Leiter und deren Strukturen zudem kleiner und variationsreicher sind. Die für die Metafunktion wichtige Geometrie wird dabei auf chemischem Weg erreicht.
„Wir verwenden so genannte konjugierte Bindungssysteme. Hier können sich die Elektronen innerhalb von organischen Molekülen frei bewegen“, erklärt Langhals. Die erforderlichen elektromagnetischen Resonanzen erreichen die Chemiker durch Chromophore, also den farbgebenden Teil eines Moleküls. Chromophore können elektromagnetische Wellen im sichtbaren Bereich resonant absorbieren. In den neu entwickelten Molekülen befinden sich zwei parallele chromophore Elektronensysteme, die mit einem nichtleitenden Zwischenstück verbunden sind. Diese spezielle räumliche Anordnung verändert die Lichtbrechung der neuen Materialien und ermöglicht ganz neue Effekte: Wird ein negativer Brechungsindex erzielt, legt das Licht quasi den Rückwärtsgang ein und wird genau andersherum gebrochen als normal. „So könnten Metamaterialien Lichtstrahlen um ein Objekt herumleiten und es scheinbar verschwinden lassen“, sagt Langhals.
Mit den neuen organischen Metamaterialien ist der optische Tarnmantel zwar noch nicht fertig – aber das nötige Garn ist vorhanden. Das Gewebe fehlt momentan noch, könnte aber möglicherweise durch geeignete flüssigkristalline Strukturen aufgebaut werden. Weitere Arbeiten zu verbesserten Metamaterialien sind im Gange. „Diese Materialien versprechen zahlreiche neue Möglichkeiten, die insbesondere im optischen IT-Bereich vielleicht sogar viel interessanter werden als eine einfache Tarnfunktion, wie die Entwicklung von hauchdünnen optischen Linsen. Die weitere Entwicklung wird auf jeden Fall spannend“, meint Langhals.
LMU / AH