Heiß und kalt zugleich
Wolke aus Quantenteilchen kann mehrere Temperaturen gleichzeitig haben – Experiment liefert Einblicke in Verhalten großer Quantensysteme.
Temperatur ist eine sehr nützliche Größe. Sie ermöglicht uns eine einfache statistische Aussage über die Energie eines hochkomplizierten Teilchengewirrs. Die Details des Systems muss man dabei gar nicht genau kennen. An der TU Wien wurde nun in Zusammenarbeit mit der Universität Heidelberg untersucht, auf welche Weise Quantenteilchen einen solchen statistisch beschreibbaren Zustand erreichen. Das überraschende Ergebnis: Eine Wolke aus Atomen kann mehrere Temperaturen gleichzeitig annehmen. Damit ist ein wichtiger Baustein zum Verständnis großer Quantensysteme und ihrer exotischer Eigenschaften gelungen.
Abb.: Atomchip zum Kühlen und Manipulieren der ultrakalten Atomwolken. (Bild: TU Wien)
Die Luft um uns herum besteht aus unzähligen Molekülen, die ständig wild durcheinander fliegen. Jeder Versuch alle diese Moleküle zu verfolgen und ihre Flugbahnen zu beschreiben ist von vornherein zum Scheitern verurteilt. Doch für viele Anwendungen ist das auch gar nicht nötig. Man kann Eigenschaften finden, die das gemeinsame Verhalten aller Moleküle statistisch beschreiben – etwa den Luftdruck oder die Temperatur, die sich aus den Geschwindigkeiten der Moleküle ergibt.
Diese statistische, Boltzmannsche Betrachtungsweise ist außerordentlich erfolgreich und beschreibt viele physikalische Vorgänge, vom kochenden Wassertopf bis zu Phasenübergängen in Flüssigkristallen, die wir für Flachbildschirme verwenden. Trotz intensiver Anstrengungen gibt sie aber immer noch Rätsel auf, vor allem, wenn es um Quantensysteme geht. Wie aus vielen quantenmechanischen Einzelteilen die bekannten Gesetze der statistischen Physik – und damit letztlich auch unsere klassische Welt – hervorgehen, ist eine der großen offenen Fragen der Physik.
Am Atominstitut in Wien ist es nun in Kooperation mit der Uni Heidelberg gelungen, Vorgänge in einem Quanten-Vielteilchensystem in Experimenten präzise zu beobachten, um die Ausbildung statistischer Eigenschaften besser zu verstehen. Dazu fing das Team um Jörg Schmiedmayer Wolken aus wenigen tausend Atomen auf einem speziellen Mikrochip ein und kühlte sie auf Temperaturen nahe am absoluten Nullpunkt. Dabei kam Erstaunliches zu Tage: Nach einer plötzlichen Änderung der äußeren Bedingungen am Mikrochip strebt das Quantengas hin zu einem Gleichgewichtszustand, der durch ein statistisches Modell mit mehreren Temperaturen beschrieben wird. Das Gas kann also heiß und kalt zugleich sein. Die Anzahl der Temperaturen hängt davon ab, wie die Forscher die Gase manipulierten. „Mit unseren Mikrochips können wir diese komplexen Quantensysteme sehr gut kontrollieren und ihr Verhalten untersuchen", sagt Studienleiter Tim Langen. „Das ist besonders wichtig, da es bereits zuvor entsprechende theoretische Vermutungen gab, das vorhergesagte Verhalten aber noch nie direkt beobachtet und kontrolliert erzeugt werden konnte“.
Durch die neuen Beobachtungen lassen sich die Gesetze der Quantenwelt besser mit der statistischen Beschreibung vereinen. Dies ist für eine Vielzahl von Quantensystemen bedeutsam, in Zukunft möglicherweise auch für eine technische Nutzung. Die Resultate öffnen einen neuen Blick darauf, wie aus der seltsamen Quantenwelt unsere alltägliche Welt – mit ihren „klassischen“ Eigenschaften wie Temperatur – hervorgeht.
TU Wien / OD