Jenseits der Nyquist-Frequenz
Neue Methode verkürzt Messzeiten in der ultraschnellen Laserspektroskopie.
Die ultraschnelle Laserspektroskopie ermöglicht die Erfassung dynamischer Vorgänge auf extrem kurzen Zeitskalen, und macht sie damit zu einem sehr nützlichen Instrument für viele wissenschaftliche und industrielle Anwendungen. Ein großer Nachteil ist die beträchtliche Messzeit, die diese Technik in der Regel erfordert, was oft zu langen Messzeiten von Minuten bis Stunden führen kann. Wissenschaftler haben nun eine Lösung entwickelt, die die spektroskopische Analyse beschleunigt. Leiterin des Projekts ist Hanieh Fattahi vom Max-Planck-Institut für die Physik des Lichts.
Ultrakurze Pulse spielen eine wichtige Rolle in spektroskopischen Anwendungen. Ihre große spektrale Bandbreite ermöglicht die gleichzeitige Charakterisierung der Probe bei verschiedenen Frequenzen, so dass keine wiederholten Messungen oder Laserabstimmungen erforderlich sind. Darüber hinaus ermöglicht ihre extreme zeitliche Begrenzung eine zeitliche Isolierung der Probenantwort vom Hauptanregungspuls. Die Reaktion der Probe, die mit umfassenden spektroskopischen Informationen angereichert ist, dauert von einigen zehn Femtosekunden bis zu Nanosekunden und wird in der Regel durch einen kürzeren Puls mit verschiedenen Zeitverzögerungen untersucht.
In Verbindung mit anderen Techniken, wie der mehrdimensionalen kohärenten Spektroskopie oder der hyperspektralen Bildgebung, erleichtert die ultraschnelle Spektroskopie die Identifizierung unbekannter Inhaltsstoffe. Das Streben nach Echtzeitmessungen stößt jedoch auf Hindernisse, vor allem aufgrund der umfangreichen Datenerfassung, da diese für jedes Pixel des Spektrums mit hoher Bandbreite erforderlich ist. Die Folgen sind erhebliche Verzögerungen bei der Datenerfassung, verlängerte Verarbeitungszeit und ein erhöhtes Datenvolumen.
Forschende haben eine Lösung entwickelt, um die spektroskopische Analyse zu beschleunigen. Kilian Scheffter, Doktorand in der Gruppe Femtosekunden-Feldoskopie von Hanieh Fattahi, erklärt: „Die Reaktion von Molekülen auf ultrakurze Anregungspulse ist in vielen Proben typischerweise spärlich, was bedeutet, dass die Reaktion nur bei bestimmten Frequenzen auftritt, die als molekulare Fingerabdrücke bekannt sind. Durch eine strategische Zufallsanordnung der Messpunkte kann ein bekannter Algorithmus, der Compressed Sensing Algorithmus, das Signal effizient rekonstruieren. Somit können weniger Datenpunkte verwendet werden, als die durch das Nyquist-Kriterium vorgegebene Grenze. Die größte Herausforderung bestand jedoch darin, die zeitliche Überlappung zwischen den Messpulsen und den Femtosekunden-Anregungspulsen zufällig zu verändern. In Zusammenarbeit mit unseren Partnern in Deutschland und Frankreich haben wir erfolgreich akustische Wellen eingesetzt, um diese zeitliche Überlappung zufällig zu modulieren. Diese Innovation erweitert die Anwendung der komprimierten Abtastung auf spektroskopische Messungen in Echtzeit.“
„Die beschleunigte Zeitbereichsspektroskopie bietet mehrere Vorteile, zum Beispiel bei der Vereinfachung der labelfreien Abbildung empfindlicher Proben, bei der Echtzeit-Umweltüberwachung und Freiluftdiagnostik von toxischen und gefährlichen Gasen sowie bei der molekularen Feldoskopie", sagt Hanieh Fattahi.
MPL / JOL
Weitere Infos
- Originalveröffentlichung
H. Fattahi et al.: Compressed Sensing of Field-resolved Molecular Fingerprint Beyond the Nyquist Frequency, Ultrafast Science, online 12. April 2024; DOI: 10.34133/ultrafastscience.0062 - Femtosekunden-Feldoskopie (H. Fattahi), Max-Planck-Institut für die Physik des Lichts, Erlangen