29.01.2014

Kurzer Prozess

In Perowskit-Solarzellen sind Ladungstrennung und ihre Rekombination entscheidend für den Wirkungsgrad.

Zu den großen Durchbrüchen haben im vergangenen Jahr Solarzellen auf Perowskit-Basis gezählt: In nur wenigen Jahren hat sich der Wirkungsgrad solcher Zellen von nur drei auf jetzt über 16 Prozent gesteigert. Doch es gibt wesentliche Unterschiede zu konventionellen Solarzellen, insbesondere war bislang noch nicht gut verstanden, wie hier die zentralen Prozesse genau ablaufen: Von der Absorption des Lichts über die Ladungstrennung im Inneren des Materials bis hin zu deren Transport entlang der Oberfläche. Diesen letzten Prozess konnten nun drei Teams aus der Ecole polytechnique fédérale in Lausanne (EPFL) und dem HZB-Institut für Solare Brennstoffe aufklären. Sie untersuchten dafür Solarzellen auf Perowskit-Basis mit unterschiedlichen Architekturen. Ihre Ergebnisse könnten das gezielte Design noch leistungsstärkerer Varianten ermöglichen.

Abb.: Die Aufnahme mit einem Rasterelektronenmikroskop zeigt den Aufbau der Perowskit-Solarzelle: Auf einem Substrat (Glas und FTO) ist die Trägerstruktur aus hochporösem Titandioxid aufgebracht, in dessen Poren das Perowskit eingelagert ist. Diese Schicht ist mit einer organischen Schicht (HTM) sowie einem Goldkontakt bedeckt. (Bild: EPFL)

Die Teams um Michael Grätzel und Jaques Moser am EPFL haben mit der Gruppe um Roel van de Krol am HZB zusammengearbeitet. Mit zeitaufgelösten Spektroskopiemethoden wie der ultraschnellen Laserspektroskopie und der Mikrowellenphotoleitfähigkeit konnten sie bestimmen, wie sich Ladungsträger entlang von Perowskit-Oberflächen bewegen und rekombinieren. Sie untersuchten diese Prozesse mit verschiedenen Zell-Architekturen: Dabei nutzten sie halbleitendes Titan-Dioxid oder isolierende Aluminium-Trioxid-Schichten als poröse Trägerstrukturen. Sie imprägnierten diese porösen Strukturen mit Blei- und Jodhaltigem Perowskit (CH3NH3PbI3) sowie einem organischen Material, das für den Transport der Löcher sorgte.

Mit den zeitaufgelösten Messungen konnten sie zwei Phänomene genau vermessen, die für den Wirkungsgrad der Zelle entscheidend sind: die Ladungstrennung und ihre Rekombination. Die Ladungstrennung wird durch das einfallende Licht im Perowskit ausgelöst. Messungen mit ultraschneller Laserspektroskopie an der EPFL zeigten, dass diese Ladungstrennung extrem rasch abläuft, in weniger als einer Pikosekunde. Die Rekombination von Ladungsträgern ist dagegen ein unerwünschter Vorgang, weil sie den Wirkungsgrad der Solarzelle vermindert. „Dieser Prozess der Rekombination findet in Architekturen mit Titandioxid deutlich langsamer statt als in solchen mit Aluminiumtrioxid. Das haben wir durch die Messung der Mikrowellenphotoleitfähigkeit ermitteln können“, erklärt Dennis Friedrich aus der van-de-Krol-Gruppe.

Wie die Ergebnisse zeigen, kann der Ladungstransfer in Perowskit-Solarzellen ultraschnell und effizient stattfinden und Architekturen, die auf einer Kombination von Titandioxid und Lochleitungsschicht basieren, sind deutlich besser geeignet, um die Rekombination zu unterdrücken.

HZB / CT

Weiterbildung

Weiterbildungen im Bereich Quantentechnologie
TUM INSTITUTE FOR LIFELONG LEARNING

Weiterbildungen im Bereich Quantentechnologie

Vom eintägigen Überblickskurs bis hin zum Deep Dive in die Technologie: für Fach- & Führungskräfte unterschiedlichster Branchen.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen