Laser steuert chemischen Anker
Beim „3D-Photografting“ lassen sich mit Laserstrahlen Moleküle in einem dreidimensionalen Material punktgenau an der richtigen Stelle fixieren.
Es gibt heute viele Methoden, dreidimensionale Objekte auf der Größenskala von Mikrometern herzustellen. Doch was kann man tun, wenn man auch die chemischen Eigenschaften eines Materials mikrometergenau bestimmen möchte? An der TU Wien wurde nun eine Methode entwickelt, mit einem Laserstrahl bestimmte Moleküle punktgenau an gewünschten Stellen andocken zu lassen.
Abb.: 3D-Muster, erzeugt durch Photografting (180 Mikrometer Breite). Grün fluoriszierende Moleküle werden in einem Hydrogel fixiert. (Bild: TU Wien)
„3D-Photografting“ heißt die neue Methode. Zwei Arbeitsgruppen der TU Wien arbeiteten bei diesem Projekt eng zusammen: Das Materialwissenschafts-Team von Jürgen Stampfl und die Gruppe um Robert Liska aus dem Bereich makromolekulare Chemie.
Die beiden Forschungsgruppen machten schon in der Vergangenheit mit neuartigen 3D-Druckern auf sich aufmerksam. Für die Anwendungen, um die es diesmal geht, wären 3D-Druckverfahren allerdings nicht zielführend gewesen: „Ein Material aus winzigen Bausteinen mit unterschiedlichen chemischen Eigenschaften zusammenzusetzen ist extrem aufwendig“, erklärt Aleksandr Ovsianikov vom Institut für Werkstoffwissenschaften der TU Wien. „Man geht daher von einem bestehenden dreidimensionalen Gerüst aus und bringt punktgenau an den gewünschten Stellen bestimmte Moleküle an.“
Die Ausgangsbasis bildet ein Hydrogel – ein Material aus Makromolekülen, die in einem sehr lockeren Netzwerk angeordnet sind. Zwischen ihnen bleiben große Lücken, durch die sich andere Moleküle, oder auch ganze Zellen, hindurchbewegen können.
Maßgeschneiderte Moleküle werden in dieses Hydrogel-Netz eingebracht, dann bestrahlt ein Laser bestimmte Stellen. Dort, wo der fokussierte Laser besonders intensiv ist, bricht eine photochemisch labile Bindung der Moleküle. Dadurch entstehen reaktive Intermediate, die sich lokal sehr rasch in das Netzwerk des Hydrogels einbauen. Die mögliche Genauigkeit hängt vom verwendeten Laser-Linsensystem ab. An der TU Wien konnte eine Auflösung von 4 Mikrometern erreicht werden. „Ähnlich wie ein Maler nach Belieben Farbe auf verschiedenen Stellen der Leinwand aufträgt, werden Moleküle am Hydrogel fixiert – allerdings in drei Dimensionen und mit höchster Präzision“ erklärt Robert Liska.
Einsetzbar ist die neue Methode zum Beispiel um biologische Gewebe künstlich zu erzeugen. Ähnlich wie eine Kletterpflanze, die entlang eines Gerüsts nach oben wächst, brauchen auch Zellen eine Vorgabe, an der sie sich anlagern. In natürlichem Gewebe wird das durch die „extrazelluläre Matrix“ gewährleistet – eine Struktur, die den Zellen durch bestimmte Aminosäure-Sequenzen signalisiert, wo sie andocken müssen.
Man versucht daher, im Labor ähnliche chemische Signale zu setzen. Experimente mit der Anlagerung von Zellen auf zweidimensionalen Flächen gab es bereits, doch zur Herstellung größerer Gewebe, die eine innere Struktur haben (etwa Blutkapillaren), ist ein echtes 3D-Verfahren unverzichtbar.
Je nach Anwendungsgebiet kann man für diese Technik ganz unterschiedliche Moleküle verwenden – so kann das „3D-Photografting“ nicht nur für Bio-Engineering nützlich sein, sondern etwa auch für die Herstellung von Solarzellen dienen. Auch in der Sensorik verspricht man sich viel von dieser Technologie: Punktgenau kann man damit Moleküle anordnen, die bestimmte chemische Substanzen binden und sie damit nachweisbar machen. Ein mikroskopisches „Labor im Chip“ wird damit möglich.
TU Wien / PH