28.10.2014

Magnetische Molekühlung

Sub-Kelvin-Kühlung mit magnetischen Molekülen erreicht.

Ein internationales Team hat es erstmals geschafft, mit magnetischen Molekülen Temperaturen unterhalb von minus 272,15 Grad Celsius  zu erreichen. An der Entwicklung waren sechs Wissenschaftler der Universität Bielefeld, der University of Manchester und der Universidad de Zaragoza beteiligt.

Abb.: Das magnetische Molekül „Gd7“, das in dem Tieftemperaturexperiment eingesetzt wurde, hat die geometrische Struktur einer Schneeflocke. (Bild: NPG)

Minus 272,15 Grad Celsius entsprechen genau einem Kelvin. Deswegen nennen die Forscher ihre Entwicklung „Sub-Kelvin-Kühlung“. Um kühle Temperaturen zu erreichen, nutzt man gewöhnlich den Effekt, dass ein ausströmendes Medium kälter wird. Wie aber erreicht man richtig tiefe Temperaturen im Bereich weniger Kelvin? Dafür setzt man heutzutage Helium als Kühlmittel ein. Das wird jedoch immer rarer. „Das sehr seltene Helium-3-Isotop, mit dem man auch einige Zehntel Kelvin erreichen kann, ist inzwischen praktisch unbezahlbar“, sagt Jürgen Schnack, Mitautor der Studie und Physiker an der Universität Bielefeld. Magnetische Substanzen können ebenfalls zum Kühlen eingesetzt werden. Dazu gehören vor allem paramagnetische Salze. Ihre Abkühlung hat nichts mit Druck zu tun. Sie kühlen ab, wenn das äußere Magnetfeld, das zum Beispiel von einem Elektromagneten erzeugt wird, abnimmt. Indem der Stromfluss durch die Magnetspule verringert wird, verringert sich auch das Magnetfeld und die paramagnetischen Salze kühlen ab.

In ihrem Artikel berichten die Wissenschaftler aus Saragossa, Manchester und Bielefeld über die erfolgreiche Sub-Kelvin-Kühlung mit einem alternativen Medium – den magnetischen Molekülen. Das sind Moleküle, die magnetische Ionen, zum Beispiel Gadolinium enthalten. „Sie können heutzutage in größeren Mengen erzeugt werden und sind damit im Vergleich zum Helium gut verfügbar“, sagt Eric J. L. McInnes, dessen Arbeitsgruppe an der University of Manchester die untersuchten Moleküle synthetisiert hat.

Das magnetische Molekül, mit dem seine Kollegen und er experimentiert haben, wird „Gd7“ abgekürzt. Es hat – ganz passend – die geometrische Struktur einer Schneeflocke. Wie die Computersimulationen aus der Arbeitsgruppe von Schnack zeigen, kühlt es sich in einem verringernden Magnetfeld erst ab, erwärmt sich dann wieder, um sich schlussendlich im verschwindenden Magnetfeld wieder abzukühlen. „Wir waren richtig begeistert, als die theoretischen Rechnungen das komplexe Verhalten detailliert erklären konnten“, sagt der Professor für Theoretische Physik. „Im Vergleich zu paramagnetischen Salzen, bei denen die Temperatur stets mit abnehmendem Magnetfeld sinkt, zeigen Moleküle wie Gd7 ein komplexeres Verhalten. So kann man mit ihnen sehr tiefe Temperaturen erreichen, ohne das Magnetfeld vollständig abzuschalten“, berichtet Marco Evangelisti, in dessen Gruppe an der Universidad de Zaragoza die Tieftemperaturexperimente durchgeführt wurden.

„Man muss wissen, dass bei solchen Simulationen mit gigantischen Matrizen, also speziellen Zahlenfeldern, gerechnet wird. Wir sind froh, dass uns in Bielefeld für diese Zwecke ein leistungsstarker Superrechner zur Verfügung steht“, sagt Schnack. Das Computersystem leistete laut dem Forscher nicht nur in dem Projekt zur magnetischen Kühlung wertvolle Arbeit, sondern auch für die Forschergruppe 945 „Nanomagnete“, die von der Deutschen Forschungsgemeinschaft gefördert wird.

Jürgen Schnack forscht seit 15 Jahren an magnetischen Molekülen. Diese besitzen oft, aber nicht immer, ein organisches Grundgerüst aus Kohlenstoff, Wasserstoff und Sauerstoff. Darin sind spezielle Metallionen, zum Beispiel Eisenionen, eingebunden. Jedes dieser Eisenteilchen wirkt als winzige Magnetnadel, und benachbarte Teilchen wirken zusammen wie ein größerer Magnet. Das Ziel der Erforschung magnetischer Moleküle besteht darin, sie passgenau für verschiedene Zwecke zu konstruieren: als durchsichtige Magneten, als Nano-Datenspeicher oder eben als Kühlmoleküle.

U. Bielefeld / DE

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

Meist gelesen

Themen