Meissner-Effekt bei lichtinduzierter Supraleitung
Angeregter Supraleiter verdrängt Magnetfeld aus seinem Inneren.
Supraleiter können nicht nur elektrische Ströme verlustfrei transportieren, sondern auch Magnetfelder aus ihrem Inneren verdrängen. Dieser Meissner-Effekt ist eine direkte Folge der Kohärenz der Ladungsträger und ihrer Tendenz, sich im Gleichschritt zu bewegen. Die Messung der Verdrängung von Magnetfeldern für die lichtinduzierte Supraleitung blieb bisher jedoch eine ungelöste Herausforderung, da der Effekt nur einige Pikosekunden anhält. Dies machte es unmöglich, die Veränderungen im Magnetfeld genau zu messen.
Ein Forschungsteam des Max-Planck-Instituts für Struktur und Dynamik der Materie in Hamburg unter der Leitung von Andrea Cavalleri hat nun ein neues Experiment entwickelt, mit dem sich die magnetischen Eigenschaften von Supraleitern auch auf sehr kurzen Zeitskalen untersuchen lassen. Das Team arbeitete mit laserbestrahltem einem Yttriumbariumcuprat (YBa2Cu3O6+x), einem Material, bei dem statische Supraleitung nur bis zu einer Temperatur von etwa minus 200 Grad Celsius beobachtet wird. „Wir haben entdeckt, dass das durch Licht angeregte YBa2Cu3O6.48 nicht nur einen Widerstand von nahezu Null aufweist, sondern auch ein statisches Magnetfeld aus seinem Inneren verdrängt“, sagt Sebastian Fava.
Für dieses Experiment wurde ein zusätzlicher Kristall in unmittelbarer Nähe der untersuchten Probe platziert und zur Messung der lokalen Magnetfeldstärke verwendet. In diesem Kristall verursachen Änderungen des Magnetfeldes eine Rotation des Polarisationszustandes eines Femtosekunden-Laserpulses. „Aufgrund der kurzen Dauer des Messpulses können wir die zeitliche Entwicklung des Magnetfelds um die YBa2Cu3O6.48-Probe mit einer Auflösung von weniger als einer Pikosekunde und einer bisher unerreichten Empfindlichkeit rekonstruieren“, sagt Giovanni de Vecchi.
„Die von uns beobachtete lichtinduzierte Magnetfeldverdrängung ist von der Größe her mit derjenigen vergleichbar, die gemessen wird, wenn YBa2Cu3O6+x durch Abkühlung im Gleichgewicht supraleitend gemacht wird", ergänzt sein Kollege Michele Buzzi. „Dies deutet darauf hin, dass die lichtbasierte Anregung des Materials sogar ein effektiver Weg sein könnte, um seine supraleitenden Eigenschaften näher an die Umgebungsbedingungen heranzuführen“, fügt Gregor Jotzu hinzu, der inzwischen das Dynamic Quantum Materials Laboratory an der EPFL in Lausanne leitet. Da ein Konsens über den mikroskopischen Ursprung der lichtinduzierten Supraleitung in YBa2Cu3O6.48 noch aussteht, sind diese Ergebnisse ein wichtiger Prüfstein für die aktuellen Theorien.
In YBa2Cu3O6+x verschwindet die supraleitende Ordnung oberhalb der kritischen Temperatur für den Phasenübergang nicht vollständig, sondern es verbleibt eine lokal fluktuierende supraleitende Ordnung, die einem ungeordneten Zustand ähnelt. Diese Entdeckungen deuten darauf hin, dass die Anregung von YBa2Cu3O6+x mit maßgeschneiderten Lichtpulsen dazu genutzt werden kann, diesen fluktuierenden Zustand zu synchronisieren. Dabei wird die supraleitende Ordnung bei Temperaturen wiederhergestellt, die weit über denen liegen, bei denen das Material im Gleichgewicht supraleitend wird – bis hin zur Raumtemperatur.
MPSD / JOL