03.06.2015

Mini-Laser für die Qualitätskontrolle in Echtzeit

Quantenkaskadenlaser erlaubt kontinuierliche Überprüfung chemischer Reaktionen.

Die Qualität muss präzise stimmen – das gilt auch für Produkte der pharmazeutischen und chemischen Industrie. Wird die Zusammensetzung und die Güte bei der Herstellung mitunter noch manuell kontrolliert, könnte dies künftig ein laserbasiertes System übernehmen. Statt Stichproben erlaubt der Laser eine kontinuierliche Überprüfung in Echtzeit.

Abb.: Künftig lässt sich der Verlauf chemischer Reaktionen in Echtzeit verfolgen. Möglich macht es ein Quantenkaskadenlaser, der pro Sekunde tausend Spektren aufnimmt. (Bild: Fh.-IAF)

Pharmaindustrie, Lebensmittelherstellung oder industrielle Fertigung – ständig werden neue Produkte auf den Markt gebracht, mit verbesserten Wirkstoffen oder verträglicheren Zusammensetzungen. Um zu überprüfen, ob die chemische Reaktion wie gewünscht abläuft, nehmen Laboranten Proben aus den Reaktionsgefäßen und untersuchen sie im Labor per Chromatografie oder Spektrometer. Eine aufwändige und langwierige Angelegenheit, die nur eine stichprobenartige Untersuchung erlaubt.

Mit einem speziellen Infrarot-Laser könnte das künftig weitaus einfacher gehen. Entwickelt wurde er von Forschern an den Fraunhofer-Instituten für Angewandte Festkörperphysik IAF in Freiburg und für Photonische Mikrosysteme IPMS in Dresden. „Unser Quantenkaskadenlaser ermöglicht eine neue Art der Spektroskopie”, erläutert Ralf Ostendorf, Projektleiter am Fraunhofer IAF. Das Prinzip: Der Laser strahlt Infrarotlicht in das Reaktionsgefäß. Die darin enthaltenen Substanzen absorbieren einen Teil des Lichts, der Rest wird wieder zurückgeworfen und in einem Detektor analysiert. Das Ergebnis ist ein Absorptionsspektrum, über das sich die jeweilige Substanz präzise bestimmen lässt. Mit einem solchen Spektrometer kann man künftig genau angeben, wie hoch die Konzentration der Ausgangsstoffe im Reaktionsbehälter ist und welche Mengen bereits in das Produkt umgesetzt wurden – und zwar zu jedem beliebigen Zeitpunkt der Reaktion.

Der Laser muss dazu verschiedene Voraussetzungen erfüllen. Er darf jeweils nur Licht einer bestimmten Wellenlänge aussenden. Diese muss sich allerdings kontinuierlich verändern lassen – und zwar über einen großen spektralen Bereich. Das Laserlicht hat also anfangs eine sehr kleine Wellenlänge, die stetig bis zu einem festgelegten Wert zunimmt, bevor das Prozedere wieder von vorn beginnt. Der Detektor bestimmt dann für jede Wellenlänge, wie viel Licht die Probe zurückwirft. Eine weitere Herausforderung: Der Laser muss seine Wellenlänge auch möglichst schnell ändern. Bislang brauchte der Laser einige Sekunden, um alle Wellenlängen durchzustimmen und so eine Aussage darüber zu treffen, wie es um die zu analysierende chemische Reaktion steht. Die Forscher vom IPMS konnten diese Geschwindigkeit nun mit einem von ihnen entwickelten mikromechanischen Scannerspiegel um den Faktor 1000 steigern. Statt eines Spektrums pro Sekunde können sie nun tausend Spektren pro Sekunde aufnehmen.

Der Laser ist nur wenig größer als eine Streichholzschachtel. Damit passt er nicht nur gut an die Reaktionsgefäße in der pharmazeutischen oder chemischen Industrie, er ermöglicht auch weitere Anwendungen. Denkbar ist beispielsweise ein Handgerät, mit dem Polizisten oder Zollbeamte verdächtige Substanzen schnell und einfach überprüfen können. Handelt es sich um etwas Unbedenkliches wie Mehl oder doch um Drogen? Um diese Frage zu beantworten, müssten die Einsatzkräfte einfach nur den Laserstrahl auf die Substanz richten. Der Detektor analysiert das aufgenommene Spektrum, eine dahinter liegende Software gleicht es mit den zahlreichen gespeicherten Vergleichsspektren ab – und in Sekundenschnelle haben die Beamten Klarheit über die untersuchte Substanz.

Ein erster Labordemonstrator des Quantenkaskadenlasers ist bereits fertig. Einen Prototyp wollen die Forscher bis Ende 2015 entwickeln. Auf der Messe „Laser – World of Photonics” vom 22. bis 25. Juni in München stellen sie den Laser vor und demonstrieren sein Potenzial für die Spektroskopie.

FhG / CT

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Virtuelle Jobbörse

Virtuelle Jobbörse
Eine Kooperation von Wiley-VCH und der DPG

Virtuelle Jobbörse

Innovative Unternehmen präsentieren hier Karriere- und Beschäftigungsmöglichkeiten in ihren Berufsfeldern.

Die Teilnahme ist kostenfrei – erforderlich ist lediglich eine kurze Vorab-Registrierung.

Meist gelesen

Themen