Neue MRT-Technik für bessere Bilder
BMBF stellt 1,3 Millionen Euro für Weiterentwicklung der Kernspintomographie mithilfe von polarisierten Substanzen bereit.
Die Kernspintomographie hat sich innerhalb von 30 Jahren zu einem der wichtigsten bildgebenden Verfahren in der medizinischen Diagnostik entwickelt. Mit einem neuen Ansatz, der auf der Verwendung von polarisierten Gasen oder gelösten Stoffen beruht, sollen in Zukunft noch bessere Bilder aus dem Inneren des menschlichen Körpers angefertigt werden können. Das Bundesforschungsministerium (BMBF) stellt Wissenschaftlern der Johannes Gutenberg-Universität Mainz und des Max-Planck-Instituts für Polymerforschung in den kommenden drei Jahren 1,3 Millionen Euro bereit, damit sie das neue Verfahren zur Marktreife bringen.
Abb.: Xenon-Polarisatoranlage am Institut für Physik (Bild: JGU)
Die Wissenschaftler um Werner Heil vom Institut für Physik der JGU arbeiten an einer Technik, die noch in den Kinderschuhen steckt, jedoch das Potenzial zu einer bedeutenden Innovation in sich trägt. Das Vorhaben mit dem Titel „Magnetic Resonance Imaging (MRI) mit innovativen hyperpolarisierten Kontrastmitteln“ startet im Dezember 2012. Es wird vom BMBF im Rahmen der Maßnahme „Validierung des Innovationspotenzials wissenschaftlicher Forschung – VIP“ gefördert. Die Maßnahme unterstützt Wissenschaftler dabei, den ersten entscheidenden Schritt zu tun, um neue Ergebnisse aus der Wissenschaft in eine wirtschaftliche Nutzung zu überführen.
Die Kernspintomographie oder Magnetresonanztomographie (MRT) liefert detailgenaue Bilder von Organen und Geweben, ohne dass Patienten einer potenziell schädlichen Strahlung ausgesetzt sind. Der Nachteil dieser Methode ist aber die geringe Empfindlichkeit, die derzeit hauptsächlich durch immer stärkere und teurere Magnete verbessert wird. Das Projekt der Mainzer Wissenschaftler verfolgt hierbei einen anderen Ansatz, um zu einer genaueren Darstellung und in der Folge neuen Perspektiven für die Diagnose von Erkrankungen zu gelangen.
Normalerweise werden bei der Kernspintomographie die körpereigenen Protonen des Wasserstoffs als Signalgeber genutzt. Alternativ dazu können aber auch hyperpolarisierte Atome für die MRT verwendet werden, die in den Körper eingebracht werden müssen. Werner Heil hat zusammen mit dem Mainzer Physiker Ernst-Wilhelm Otten in den 1990er Jahren ein Verfahren entwickelt, bei dem ein Laser Helium-3 polarisiert. Das polarisierte Gas wird eingeatmet und liefert im Tomographen hochaufgelöste Bilder von der Lunge und Lungenkrankheiten bis in die kleinsten Verästelungen hinein. Aufbauend auf diesen Erfahrungen wollen die beteiligten Wissenschaftler die Technik nun weiter vorantreiben.
„Dazu wird uns die laserinduzierte Polarisation von Edelgasen allein nicht ausreichen“, erläutert Heil. Außer Helium lässt sich grundsätzlich auch Xenon polarisieren, das allerdings wegen seiner narkotisierenden Wirkung für medizinische Untersuchungen nur bedingt geeignet ist. Ganz neue Substanzen wie polarisierter Kohlenstoff-13 als Marker würden den Diagnostikern neue Türen öffnen: Biologische Moleküle oder Wirkstoffe könnten durch Hyperpolarisierung markiert werden, um somit direkte Signale über ihre Verteilung im Organismus zu erhalten. Heil erwartet, dass sich damit dynamische Prozesse auch auf molekularer Ebene beobachten lassen, etwa bestimmte Stoffwechselprozesse.
Bevor an eine praxistaugliche Umsetzung zu denken ist, gilt es jedoch, verschiedene Hürden zu überwinden. Die Hyperpolarisation hält, Helium ausgenommen, nur für kurze Zeit an. „Wir müssen also die Prozesse von Polarisierung, Verabreichung und Detektion komprimieren, sodass sie möglichst nicht länger als eine Minute in Anspruch nehmen“, erklärt Heil. Außerdem ist es ein Problem, die hyperpolarisierten Substanzen in die Blutbahn zu bringen, ohne den Organismus zu schädigen. Hier arbeitet das Forschungsteam mit Membranen, wie sie auch bei Herzlungenmaschinen oder bei der Dialyse zum Einsatz kommen. „Wir müssen den Reaktionsraum vom Applikationsraum trennen“, erläutert Peter Blümler, der maßgeblich an diesem Problem arbeitet. „Vielleicht brauchen wir dazu auch mehrere Membranen, damit nur das ins Blut gelangt, was wir auch wirklich wollen.“ Ein anderes Problem scheint indes schon gelöst: Während die Polarisierung von Helium oder Xenon mit Lasern erfolgen kann, wird durch Arbeiten von Kerstin Münnemann am MPI für Polymerforschung bei anderen Stoffen die magnetische Polarisation durch Reaktion mit Para-Wasserstoff erreicht. Die drei Wissenschaftler wollen in diesem Projekt ihre Expertise bündeln, um an der Schnittstelle von Physik, Chemie und Medizin neue Diagnostika herzustellen.
JGU / OD