Organisches Zinn steigert Lichtabsorption
Neues organisches Polymer-Halbleiter-Material mit Kupplungsreaktionen hergestellt.
Forschern der Christian-Albrechts-Universität zu Kiel (CAU) ist es erstmals gelungen, organisches Zinn in ein halbleitendes Polymer einzubauen. Dadurch kann der Kunststoff Licht über einen weiten Bereich des Sonnenspektrums absorbieren. Das könnte organische Solarzellen viel effektiver machen.
Abb.: Kristalle der Monomere (links) und Stücke des Polymerfilms (rechts) mit der chemischen Struktur des Kunststoffes. (Bild: J. Linshöft)
Halbleiter sind Stoffe, die Strom nur unter gewissen Umständen leiten, wie zum Beispiel bei Bestrahlung durch Licht. Diese Eigenschaft macht halbleitende Kunststoffe, auch halbleitende Polymere genannt, zu äußerst vielversprechende Materialien für die jüngste Generation von Solarzellen, den organischen Solarzellen. Gegenüber den klassischen anorganischen Varianten können diese günstiger hergestellt werden. Außerdem sind diese Polymere auch sehr leicht, was bei vielen Anwendungen, etwa im Transportwesen, vorteilhaft ist. „Trotzdem erreichen organische Solarzellen noch nicht die gleiche Effizienz wie anorganische Solarzellen auf Siliziumbasis, so dass hier noch ein großer Forschungsbedarf besteht“, ordnet Anne Staubitz vom Otto-Diels-Institut ihr Forschungsthema ein.
Ein Ziel der organischen Halbleiterforschung ist es, organische Polymere mit kleinen Energieabständen herzustellen. Solche stark absorbierenden, tief gefärbten Kunststoffe zu entwickeln ist allerdings schwierig und daher aktuell ein besonders aktiver Forschungszweig. „Das neue Material aus unseren Laboren lässt bereits mit bloßem Auge erkennen, dass dies hier gelungen ist!“, freut sich Staubitz. Tiefviolett erscheint das Polymer in Lösung und nahezu schwarz als dünner Film.
Um möglichst kleine Energieabstände zu erzielen, gingen die Kieler Forschern einen neuen Weg in der Chemie. In eine Kohlenstoff-Polymerkette bauten sie Zinn in ringförmigen Zyklen ein, die Stannole genannt werden. Zinn gehört derselben chemischen Gruppe wie Kohlenstoff an und ähnelt ihm deshalb in einigen Eigenschaften. Elektronisch unterscheiden sich Stannole und die entsprechenden Kohlenstoffverbindungen (Cyclopentadiene) jedoch stark. „Zinn ist nicht einfach nur ein besonders dickes Kohlenstoffatom“, erklärt Anne Staubitz. „Es kann die hohen Energieniveaus in seinen organischen Verbindungen massiv herabsetzen.“ Bis jetzt hatte es aber noch niemand geschafft, diese besonderen Eigenschaften des Zinns in polymeren Materialien zu nutzen.
Abb.: Die Absorption des Polymers reicht bis in den orangen Bereich des Spektrums, so dass das Auge beim Betrachten nur noch den langwelligen Teil des Spektrums wahrnimmt; somit erscheint das Polymer optisch als tiefviolett. (Bikd: A. Staubitz)
Insbesondere die Verknüpfung der einzelnen molekularen Monomere zu langen Polymerketten bereitete den Forschenden Schwierigkeiten. Diese Monomere enthielten nämlich nicht nur das gewünschte Zinn in den Stannol-Einheiten selbst; Zinn war auch in reaktiven Kupplungs-Gruppen, die zur Verknüpfung der Monomere zum Polymer benötigt wurden, vorhanden. Nur diese Gruppen sollten reagieren. Die Stannolringe hingegen durften nicht angegriffen werden, weil jede unerwünschte Nebenreaktion zu einer dramatischen Verkürzung der Polymerlänge führt, was einen deutlichen Qualitätsverlust des Polymers verursacht.
„Mit unserem Projekt sind wir ein hohes Risiko eingegangen, denn Kupplungsreaktionen, die Zinn zielgerichtet auswählen, waren in der Chemie bislang unbekannt“, betont Staubitz. Die Forscher mussten also nicht nur eine hochselektive, sondern eine höchstselektive Kreuzkupplungsreaktion entwickeln.
Und das Experiment gelang. Unter Einsatz von Palladium als Reaktionsbeschleuniger stellte das Team den gewünschten Kunststoff her. Das Material lässt sich sehr leicht zu dünnen Filmen verarbeiten, die schwarz glänzend sind und deren Anwendungen nun für Tests in organischen Solarzellen zur Verfügung stehen.
CAU / PH