09.02.2011

Perfekte Graphenbänder

Bottom-up-Synthese ermöglicht die Herstellung von defektfreien, löslichen Nanobändern aus Graphen.

Bottom-up-Synthese ermöglicht die Herstellung von defektfreien, löslichen Nanobändern aus Graphen.

Elektronische Bauteile auf Basis von Graphen könnten unsere derzeitige Silizium-Elektronik ablösen. Graphen, die erst in neuerer Zeit entdeckte Kohlenstoffmodifikation, besteht aus zweidimensionalen Schichten wabenförmig angeordneter aromatischer Kohlenstoffsechsringe. Anders als ausgedehnte Graphenschichten haben schmale Nanobänder aus Graphen Halbleitereigenschaften und wären damit ideale Kandidaten für elektronische Anwendungen. Klaus Müllen und ein Team vom Max-Planck-Institut für Polymerforschung in Mainz stellten nun eine neue Methode zur Synthese langer, schmaler Graphenbänder mit definierten Dimensionen vor.

Abb.: Polyphenylenvorstufen ermöglichen mit ihrem einzigartigen geknickten Gerüst durch eine intramolekulare Scholl-Reaktion eine vollständige Cyclodehydrierung in einem Reaktionsschritt. (Bild: Wiley-VCH)

Bisher werden Graphenbänder meist aus größeren Graphenschichten herausgeschnitten oder man schlitzt Kohlenstoffnanoröhrchen der Länge nach auf. Allerdings ist es auf diese Weise unmöglich, Bänder mit genau festgelegtem Verhältnis von Breite zu Länge sowie definierten Rändern herzustellen. Diese Details sind aber wichtig, denn sie bestimmen die elektronischen Eigenschaften der Bänder. Gesucht ist daher eine Methode, mit der sich sehr schmale Graphenbänder kontrolliert herstellen lassen – eine extrem schwierige Herausforderung. Die Forscher um Müllen sind nun auf dem besten Wege, diese zu meistern. Sie gehen dabei nicht von großen Strukturen aus, die sie zerschneiden („Top-down“), sondern bauen die Bänder aus kleineren Bausteinen auf („Bottom-up“).

Als Bausteine wählten Müllen und sein Team lange Ketten aus aromatischen Kohlenstoffsechsringen, so genannte Polyphenylene. Anders als in früheren Ansätzen stellten sie aber keine geraden Ketten her, sondern solche mit flexiblem, zickzackartig geknicktem Rückgrat. Zusätzlich wurden Kohlenwasserstoffseitenketten an das Rückgrat gehängt, um die Löslichkeit in organischen Lösungsmitteln so zu erhöhen, dass die Moleküle zu allen Zeitpunkten in Lösung verarbeitet werden können. Der folgende Schritt ist eine Reaktion, bei der Wasserstoff abgespalten wird (Dehydrierung). Dabei kommt es in jeder Spitze des „Zickzacks“ zu einem Ringschluss, bei dem ein neuer aromatischer Kohlenstoffsechsring entsteht, der eine gemeinsame Seite mit drei seiner Nachbarringe hat – aus der Kette wird ein schmales Band.

Auf diese Weise gelang es dem Team, eine Serie verschiedener Nanobänder herzustellen, die Längen von mehr als 40 nm erreichen. Die Breite wird dabei über die Größe der „Zacken“ der Polyphenylen-Vorstufen definiert. Die entstehenden Bänder sind frei von Defektstellen und in üblichen organischen Lösungsmitteln löslich. „Wir haben hier erstmals gezeigt, dass strukturelle Perfektion in der klassischen Bottom-up-Synthese definierter Graphen-Nanobänder möglich ist“, so Müllen. „Die Löslichkeit der Bänder ist eine wichtige Voraussetzung für die Herstellung elektronischer Bauteile in großem Maßstab.“

Gesellschaft Deutscher Chemiker e.V. / AL


Weitere Infos

Sonderhefte

Physics' Best und Best of
Sonderausgaben

Physics' Best und Best of

Die Sonder­ausgaben präsentieren kompakt und übersichtlich neue Produkt­informationen und ihre Anwendungen und bieten für Nutzer wie Unternehmen ein zusätzliches Forum.

ContentAd

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Kleinste auf dem Markt erhältliche Hochleistungs-Turbopumpe

Die HiPace 10 Neo ist ein effizienter, kompakter Allrounder für den Prüfalltag, der geräuscharm und besonders energieeffizient ist.

Meist gelesen

Themen