Reibung zwischen Licht und Kugel
Genaue Einblicke, wie zwei mikroskopische Flächen übereinander gleiten, könnten helfen, reibungsarme Oberflächen herzustellen.
Forscher der Universität Stuttgart und des Max-Planck-Instituts für intelligente Systeme in Stuttgart haben in einem Experiment eine Lage regelmäßig angeordneter Kunststoffkügelchen über einen künstlichen Kristall aus Licht gezogen. Auf diese Weise konnten sie im Detail beobachten, wie die Schicht der Kügelchen über den Lichtkristall glitt. Anders als man intuitiv vermuten könnte, bewegen sich die Kügelchen dabei nicht alle gemeinsam. Vielmehr gleiten immer nur einige von ihnen, während die anderen auf ihren Plätzen sitzenbleiben. Diese Beobachtung bestätigt theoretische Voraussagen und erklärt auch, warum die Reibung zwischen mikroskopischen Oberflächen von ihrer atomaren Struktur abhängt.
Abb.: Wenn zwei mikroskopische Flächen mit gleicher Struktur übereinander gleiten, bewegen sich nicht alle Teilchen gleichzeitig. Vielmehr rutschen die Partikel in einzelnen Bereichen (blaue Kugeln), wobei ihre Anordnung verzerrt wird. Die anderen Teilchen (grün) bleiben dagegen in den Mulden der Oberfläche sitzen. (Bild: T. Bohlein / I. Schofron)
Die Faktoren, die bei Reibung zwischen großen Objekten dominieren, haben Physiker bereits seit einiger Zeit recht gut verstanden. Entscheidend sind dabei die unzähligen kleinen Unebenheiten, die es auf jeder Oberfläche gibt. Sie bewirken, dass sich zwei ausgedehnte Oberflächen immer nur an einzelnen Punkten berühren.
Ganz anders ist das, wenn zwei mikroskopisch kleine Flächen aufeinander reiben. Sie berühren sich – wenn sie entsprechend akkurat gearbeitet sind – mit allen Atomen ihrer Oberfläche. Wie Reibung auf dieser atomaren Ebene stattfindet, haben die Stuttgarter Forscher nun erstmals beobachtet. Sie können in ihrem Experiment auch nachvollziehen, warum Oberflächen mit gleicher Struktur stärker aufeinander reiben als solche mit unterschiedlicher Struktur.
Das Team hat aus Laserlicht und elektrisch geladenen Kunststoffkügelchen in einem Wasserbad ein zweidimensionales Modell für zwei aufeinander reibende Oberflächen geschaffen. Da sich die in dem Wasser schwebenden Kügelchen elektrisch abstoßen, ordnen sie sich in einer periodisch geordneten Schicht an. So bilden sie die eine der Oberflächen.
Die andere Oberfläche erzeugten die Forscher unter der Schicht der Kügelchen mit intensiven Laserstahlen. Deren elektromagnetische Wellen überlagern sie so, dass sich ein Lichtkristall bildet.
Zunächst stimmten die Forscher den Abstand der Mulden in dem optischen Eierkarton genau auf den Abstand der Kunststoffkügelchen ab. Eigentlich könnte man vermuten, dass die Flächen sich ruckartig voneinander lösen und neu ineinander einrasten würden, so als würde man versuchen zwei ineinander sitzende Eierkartons übereinander zu ziehen.
Im Experiment zeigte sich allerdings ein anderer Mechanismus. Als das Team die Kunststoff-Kugeln über die optische Oberfläche zog, fingen nicht alle Kügelchen gleichzeitig an zu rutschen, vielmehr bewegten sich die Partikel nur in einzelnen Bereichen. In diesen Arealen verließen die Kügelchen ihre komfortablen Mulden und rückten zudem ein wenig zusammen. Möglich ist das, weil die Kügelchen, aber auch die Atome in einer Oberfläche nicht wie betoniert nebeneinander sitzen, sondern immer ein bisschen Spielraum haben. Die durch den Zug hervorgerufenen Verzerrungen der Kugel- oder Atomschicht passen dann einfach nicht mehr genau auf die Oberfläche des optischen Kristalls. Das machte es viel einfacher, die Teilchen aus ihren Mulden zu ziehen.
Während die Forscher an der Teilchenlage ziehen, wandern die gestauchten Zonen durch die Kugelschicht, wobei sich nur die Teilchen in diesen Zonen aus ihren Mulden lösen können. Die gestauchten Gebiete, die in Richtung der ziehenden Kraft über die optische Oberfläche wanderten, wurden umso größer, je stärker das Team an der Lage der Kunststoff-Kügelchen zog.
Im nächsten Experiment schoben die Stuttgarter Physiker die Mulden des optischen Eierkartons etwas enger zusammen, so dass dieser von vorne herein schlechter mit der Anordnung der Kunststoff-Kügelchen übereinstimmte. „Dadurch finden weniger Teilchen einen Platz in einer Mulden, und die Verzerrungszonen lassen sich deutlich einfacher über die Oberfläche bewegen“, sagt Forscher Thomas Bohlein.
Dass lokale Verzerrungen – Physiker sprechen hierbei von kinks und antikinks – bei der Reibung zwischen mikroskopischen Oberflächen die entscheidende Rolle spielen, hatten Physiker schon vermutet. Die Stuttgarter Forscher haben diese Veränderungen in der Oberfläche jetzt aber zum ersten Mal experimentell beobachtet.
Sie gingen aber noch einen Schritt weiter. Kaum eine Vorstellung hatten Physiker nämlich, wie eine kristalline auf einer quasikristallinen Oberfläche reibt. Quasikristalle weisen kleine Bereiche mit einer strengen Ordnung auf. Diese wiederholt sich in größeren Dimensionen aber nicht regelmäßig wie in einem echten Kristall.
Einen Quasikristall formten die Physiker nun unter der kristallinen Lage der Kunststoff-Kügelchen, indem sie wiederum die Laserstrahlen geschickt überlagerten. In den Mulden auf der quasikristallinen Oberfläche kamen die Kunststoff-Kügelchen nur noch selten zu liegen, und die Reibung reduzierte sich verglichen mit zwei kristallinen Oberflächen drastisch.
Die Erkenntnisse, wie Reibung im Mikro-Maßstab funktioniert, könnten auch praktische Konsequenzen haben. Vor allem die Kombination einer kristallinen und einer quasikristallinen Oberfläche biete die Möglichkeit die Reibung in Mikro- und Nano-Systemen zu reduzieren, sagen die Forscher. Denkbar sei es auch, Oberflächen so zu gestalten, dass diese nahezu reibungslos übereinander gleiten.
MPG / PH