Sauberes Wasser dank Bestrahlung
Reaktorsystem mit UV-Strahler kann auch hartnäckige Schadstoffe aus Abwasser entfernen.
In unserem Abwasser befindet sich so Einiges, was nicht unbedingt in die Umwelt gelangen soll – doch auch Kläranlagen entfernen nur einen Teil der Verunreinigungen. Insbesondere den persistenten Stoffen – dazu zählen unter anderem sehr stabile Kohlenwasserstoff-Verbindungen wie Aromaten – können auch die Bakterien, die in der biologischen Aufbereitungsstufe üblicherweise eingesetzt werden, nichts anhaben. Die Folge: Rückstände von Reinigungs- und Pflanzenschutzmitteln oder auch von Pharmaka gelangen in die Gewässer. In der Nordsee etwa ist heute eine Belastung mit solchen Schadstoffen deutlich messbar.
Abb.: Ein 172-Nanometer-UV-Strahler (Bild: Fraunhofer IGB)
Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart haben in Zusammenarbeit mit internationalen Industriepartnern ein neues Reaktorsystem entwickelt, das solche hartnäckigen Schadstoff-Moleküle gründlich und effizient abbaut – ohne den Zusatz chemischer Katalysatoren wie etwa Wasserstoffperoxid. Stattdessen nutzen die Forscher die „Selbstheilungskräfte“ des Wassers mit Hilfe der Photolyse. Das Prinzip basiert auf der Spaltung von Wasser-Molekülen durch Photonen. Die Forscher setzen in ihrer Anlage daher ausschließlich Lichtquellen ein, die UV-Licht im Wellenlängenbereich von 172 Nanometern emittieren. Sobald diese Photonen ins Wasser eintreten, spalten sie dort H2O-Moleküle auf und in Folge bilden sich hochreaktive Hydroxylradikale. „Diese Wasserstoff-Sauerstoffverbindungen haben ein noch höheres Reaktionspotenzial als beispielsweise atomarer Sauerstoff. Dadurch sind sie in der Lage, auch die sehr stabilen Kohlenwasserstoff-Verbindungen von Schadstoffrückständen aufzubrechen“, erklärt Siegfried Egner, Abteilungsleiter Physikalische Prozesstechnik am IGB.
Die Herausforderung: Der beschriebene Prozess erfolgt nur in unmittelbarer Umgebung des UV-Strahlers – einem rechteckigen, flachen Glaskörper, der im Reaktorbehälter platziert wird. In eingeschaltetem Zustand bildet sich an der Glasaußenfläche eine etwa 50 Mikrometer dünne Reaktionsschicht, in der die Hydroxylradikale entstehen. Damit auch alle Kohlenwasserstoff-Verbindungen aufgebrochen werden, muss das Wasser im Reaktor kontrolliert durch diese Grenzschicht geleitet werden – eine echte Tüftlerarbeit: Einerseits gilt es sicherzustellen, dass der gesamte Reaktorinhalt aufbereitet wird. Anderseits möchten die Forscher nach Möglichkeit dafür sorgen, dass jedes einmal gebildetes Hydroxylradikal auch für eine chemische Reaktion genutzt wird. Die Verbindung besitzt eine extrem kurze Lebensdauer. Wenn sich in dieser Zeit kein „frischer“ Schadstoff zum Reagieren findet, verpufft ihre Energie ungenutzt. Den Stuttgarter Experten ist es gelungen, die Wasserbewegung so exakt zu steuern, dass der gesamte Reaktorinhalt zuverlässig und höchst effizient gereinigt wird.
Der erste industrielle Prototyp, den die Forscher zusammen mit den Industriepartnern auf der Messe zeigen werden, hat einen Durchsatz von bis zu 2,5 Kubikmetern pro Stunde. „Gewisse Schwankungen sind aber normal, denn die Geschwindigkeit hängt natürlich auch vom jeweiligen Verschmutzungsgrad ab“, erläutert Egner. Damit das Wasser auch wirklich erst abgelassen wird, wenn seine Qualität einwandfrei ist, verfügt die Anlage über einen weiteren Sicherheitsmechanismus: Direkt am Abfluss befindet sich ein Messsystem, das die Schadstoffbelastung des Wassers kontrolliert. Erst wenn ein Minimalwert unterschritten ist, wird es abgelassen. Die gesamte Anlagentechnik arbeitet vollautomatisch und lässt sich sehr flexibel betreiben – etwa, indem man sie abhängig vom Angebot an elektrischer Energie kurzfristig zu- und abschaltet.
Fh.-IGB / DE